Saltar al contenido principal

# 4.4: Circuitos paralelos de resistencia-condensador

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Usando los mismos componentes de valor en nuestro circuito de ejemplo en serie, los conectaremos en paralelo y veremos qué sucede: (Figura a continuación)

Circuito R-C paralelo.

## Resistor y Capacitor en Paralelo

Debido a que la fuente de alimentación tiene la misma frecuencia que el circuito de ejemplo en serie, y la resistencia y el condensador tienen ambos los mismos valores de resistencia y capacitancia, respectivamente, también deben tener los mismos valores de impedancia. Entonces, podemos comenzar nuestra tabla de análisis con los mismos valores “dados”:

Siendo este un circuito paralelo ahora, sabemos que el voltaje es compartido por igual por todos los componentes, por lo que podemos colocar la cifra para el voltaje total (10 voltios 0 o) en todas las columnas:

## Cálculo usando la ley de Ohm

Ahora podemos aplicar la Ley de Ohm (I=E/Z) verticalmente a dos columnas de la tabla, calculando la corriente a través de la resistencia y la corriente a través del condensador:

Al igual que con los circuitos de CC, las corrientes de derivación en un circuito de CA paralelo se suman para formar la corriente total (Ley de Corriente de Kirchhoff nuevamente):

Finalmente, la impedancia total se puede calcular usando la Ley de Ohm (Z=E/I) verticalmente en la columna “Total”. Como vimos en el capítulo de inductancia de CA, la impedancia paralela también se puede calcular usando una fórmula recíproca idéntica a la utilizada en el cálculo de resistencias paralelas. Cabe mencionar que esta regla de impedancia paralela se mantiene verdadera independientemente del tipo de impedancias colocadas en paralelo. En otras palabras, no importa si estamos calculando un circuito compuesto por resistencias paralelas, inductores paralelos, condensadores paralelos, o alguna combinación de los mismos: en forma de impedancias (Z), todos los términos son comunes y se pueden aplicar uniformemente a la misma fórmula. Una vez más, la fórmula de impedancia paralela se ve así:

El único inconveniente de usar esta ecuación es la cantidad significativa de trabajo que se requiere para resolverla, especialmente sin la ayuda de una calculadora capaz de manipular cantidades complejas. Independientemente de cómo calculemos la impedancia total para nuestro circuito paralelo (ya sea la Ley de Ohm o la fórmula recíproca), llegaremos a la misma cifra:

## Revisar

• Las impedancias (Z) se manejan igual que las resistencias (R) en el análisis de circuitos paralelos: las impedancias paralelas disminuyen para formar la impedancia total, utilizando la fórmula recíproca. ¡Solo asegúrate de realizar todos los cálculos en forma compleja (no escalar)! Z Total = 1/ (1/Z 1 + 1/Z 2 +. 1/Z n)
• Ley de Ohm para circuitos de CA: E = IZ; I = E/Z; Z = E/I
• Cuando las resistencias y los capacitores se mezclan en circuitos paralelos (al igual que en los circuitos en serie), la impedancia total tendrá un ángulo de fase en algún lugar entre 0 o y -90 o. La corriente del circuito tendrá un ángulo de fase en algún lugar entre 0 o y +90 o.
• Los circuitos de CA paralelos exhiben las mismas propiedades fundamentales que los circuitos de CC paralelos: el voltaje es uniforme en todo el circuito, las corrientes de derivación se suman para formar la corriente total y las impedancias disminuyen (a través de la fórmula recíproca) para formar la impedancia total.

This page titled 4.4: Circuitos paralelos de resistencia-condensador is shared under a gnudls 1.3 license and was authored, remixed, and/or curated by Tony R. Kuphaldt (All About Circuits) via source content that was edited to the style and standards of the LibreTexts platform.