Saltar al contenido principal
LibreTexts Español

3.8: Apéndice- Sech-Álgebra

  • Page ID
    84935
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    La secante hiperbólica se define como

    \[\text{sech} (x) = \dfrac{1}{\cosh (x)} \nonumber \]

    2021-04-09 2.45.59.png
    Figura 3.26: Funciones hiperbólicas. Figura por MIT OCW.

    \[\cosh^2 (x) - \sinh^2 (x) = 1 \nonumber \]

    \[\text{sech}^2 (x) = 1 - \tanh^2 (x) \nonumber \]

    \[\dfrac{d}{dx} \text{sech} (x) = -\tanh (x) \text{sech} (x) \nonumber \]

    \[\dfrac{d^2}{dx^2} \text{sech} (x) = \text{sech} (x) [1 - 2\text{sech}^2 (x)] \nonumber \]

    \[\int_{-\infty}^{+\infty} \text{sech} (x) dx = \pi \nonumber \]

    función\(f(t)\) Transformada de Fourier\(\tilde{f} (\omega) = \int f(t) e^{-j\omega t} dt\)
    \(\text{sech} (t)\) \(\pi \text{sech} (\tfrac{\pi}{2} \omega)\)
    \(\text{sech}^2 (t)\) \(\tfrac{\pi \omega}{\sinh (\tfrac{\pi}{2} \omega)}\)
    \(\text{sech}^3 (t)\) \(\dfrac{1}{2} (1 + \omega^2) \pi \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(\text{sech}^5 (t)\) \(\dfrac{1}{24} (\omega^4 + 10 \omega^2 + 9) \pi \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(\tanh (t) \text{sech} (t)\) \(-j \pi \omega \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(\tanh^2 (t) \text{sech} (t)\) \(\tfrac{1}{2} (1 - \omega^2) \pi \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(\tanh^3 (t) \text{sech} (t)\) \(-j\tfrac{\omega}{6} (5 - \omega^2) \pi \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(\tanh (t) \text{sech}^3 (t)\) \(-j\tfrac{\omega}{6} (1 + \omega^2) \pi \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(\tanh^2 (t) \text{sech}^3 (t)\) \(\tfrac{1}{2} (1 + \omega^2) \pi \text{sech} (\dfrac{\pi}{2} \omega) - \tfrac{1}{24} (\omega^4 + 10\omega^2 + 9) \pi \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(t \tanh (t) \text{sech} (t)\) \(\pi \text{sech} (\dfrac{\pi}{2} \omega) - \tfrac{\omega \pi^2}{2} \tanh (\dfrac{\pi}{2} \omega) \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(t\tanh^2 (t) \text{sech} (t)\) \(-j \omega \pi \text{sech} (\dfrac{\pi}{2} \omega) - \tfrac{\pi^2}{4} (1 - \omega^2) \tanh (\dfrac{\pi}{2} \omega) \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(t\tanh^3 (t) \text{sech} (t)\) \(\dfrac{1}{6} (5 - 3\omega^2) \pi \text{sech} (\dfrac{\pi}{2} \omega) - \tfrac{\omega \pi^2}{12} (5 -\omega^2) \tanh (\dfrac{\pi}{2} \omega) \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(t\tanh (t) \text{sech}^3 (t)\) \(\dfrac{1}{6} (1 + 3\omega^2) \pi \text{sech} (\dfrac{\pi}{2} \omega) - \tfrac{\omega \pi^2}{12} (1 + \omega^2) \tanh (\dfrac{\pi}{2} \omega) \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(t \text{sech} (t)\) \(-j \tfrac{\pi^2}{6} \tanh (\dfrac{\pi}{2} \omega) \text{sech} (\dfrac{\pi}{2} \omega)\)
    \(t \text{sech}^3 (t)\) \(-j\omega \pi \text{sech} (\dfrac{\pi}{2} \omega) - j \tfrac{\pi^2}{4} (1 + \omega^2) \tanh (\dfrac{\pi}{2} \omega) \text{sech} (\dfrac{\pi}{2} \omega)\)

    This page titled 3.8: Apéndice- Sech-Álgebra is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Franz X. Kaertner (MIT OpenCourseWare) .