Buscar Volver arriba Filtrar resultadosUbicaciónHumanidades (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados4.10: La noción de tamaño, y Schröder-Bernsteinhttps://espanol.libretexts.org/Humanidades/Filosofia/Conjuntos_Logica_Computacion_(Zach)/01%3A_Conjuntos_Relaciones_Funciones/04%3A_El_tamano_de_los_juegos/4.10%3A_La_noci%C3%B3n_de_tama%C3%B1o%2C_y_Schr%C3%B6der-BernsteinAquí hay un pensamiento intuitivo: si no\(A\) es más grande que\(B\) y no\(B\) es mayor que\(A\), entonces\(A\) y\(B\) son equinumeros. Esto se justifica por el Teorema de Schröder-Bernstein.Mostrar más resultados