Loading [MathJax]/extensions/TeX/cancel.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 4 resultados
    • https://espanol.libretexts.org/Fisica/Mecanica_Clasica/Principios_Variacionales_en_Mec%C3%A1nica_Cl%C3%A1sica_(Cline)/05%3A_C%C3%A1lculo_de_variaciones/5.07%3A_Sistemas_Variacionales_Constre%C3%B1idos
      Las restricciones holonómicas acoplan las coordenadas para el sistema.
    • https://espanol.libretexts.org/Fisica/Mecanica_Clasica/Principios_Variacionales_en_Mec%C3%A1nica_Cl%C3%A1sica_(Cline)/06%3A_Din%C3%A1mica_lagrangiana/6.08%3A_Aplicaciones_a_sistemas_que_involucran_restricciones_holon%C3%B3micas
      \[\begin{align} (M+2m)\dot{x} &=&\text{constant} \tag{$\Lambda _{x}L=0$} \\ (M+2m)\dot{y} &=&\text{constant} \tag{$\Lambda _{y}L=0$} \\ (M+2m)\dot{z} &=&\text{constant} \tag{$\Lambda _{z}L=0$} \\ \lef...\[\begin{align} (M+2m)\dot{x} &=&\text{constant} \tag{$\Lambda _{x}L=0$} \\ (M+2m)\dot{y} &=&\text{constant} \tag{$\Lambda _{y}L=0$} \\ (M+2m)\dot{z} &=&\text{constant} \tag{$\Lambda _{z}L=0$} \\ \left( 2mr^{2}+\frac{1}{12}Ml^{2}\right) \dot{\varphi}\sin ^{2}\theta &=& \text{constant} \tag{$\Lambda _{\varphi }L=0$} \\ \ddot{r}-r\dot{\theta}^{2}-r\dot{\varphi}^{2}\sin ^{2}\theta +\frac{K}{m} (r-r_{0}) &=&0 \tag{$\Lambda _{r}L=0$} \\ \left( r^{2}+\frac{Ml^{2}}{24m}\right) \ddot{\theta}+2r\dot{r}\…
    • https://espanol.libretexts.org/Fisica/Mecanica_Clasica/Principios_Variacionales_en_Mec%C3%A1nica_Cl%C3%A1sica_(Cline)/05%3A_C%C3%A1lculo_de_variaciones/5.09%3A_Multiplicadores_de_Lagrange_para_Restricciones_Holon%C3%B3micas
      La técnica del multiplicador Lagrange proporciona una manera poderosa y elegante de manejar las restricciones holonómicas usando las ecuaciones de Euler. El método general de multiplicadores Lagrange ...La técnica del multiplicador Lagrange proporciona una manera poderosa y elegante de manejar las restricciones holonómicas usando las ecuaciones de Euler. El método general de multiplicadores Lagrange para n variables, con m restricciones, se introduce mejor utilizando la ingeniosa explotación de Bernoulli de los desplazamientos infinitossimales virtuales, que Lagrange significó con el símbolo δ.
    • https://espanol.libretexts.org/Fisica/Mecanica_Clasica/Mec%C3%A1nica_Cl%C3%A1sica_(Tatum)/13%3A_Mec%C3%A1nica_Lagrangiana/13.03%3A_Restricciones_Holon%C3%B3micas
      El estado del sistema en cualquier momento puede ser representado por un solo punto en el espacio 3N -dimensional. Sin embargo, en muchos sistemas, las partículas pueden no ser libres de vagar por cua...El estado del sistema en cualquier momento puede ser representado por un solo punto en el espacio 3N -dimensional. Sin embargo, en muchos sistemas, las partículas pueden no ser libres de vagar por cualquier parte a voluntad; pueden estar sujetas a diversas restricciones. Una restricción que puede describirse mediante una ecuación que relaciona las coordenadas (y quizás también el tiempo) se denomina restricción holonómica, y la ecuación que describe la restricción es una ecuación holonómica.

    Support Center

    How can we help?