Buscar Volver arriba Filtrar resultadosUbicaciónEstadísticas (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados12.5: El problema del emparejamientohttps://espanol.libretexts.org/Estadisticas/Teoria_de_Probabilidad/Probabilidad%2C_estad%C3%ADstica_matem%C3%A1tica_y_procesos_estoc%C3%A1sticos_(Siegrist)/12%3A_Modelos_de_Muestreo_Finito/12.05%3A_El_problema_del_emparejamientoDe ello se deduce que \P(N_n = k) = \P(N_{n+1} = k + 1 \mid I_{n+1} = 1), \quad k \in \{0, 1, \ldots, n\} De la defnición del argumento de probabilidad condicional tenemos\[ \P(N_n = k) = \P(N_{n...De ello se deduce que \P(N_n = k) = \P(N_{n+1} = k + 1 \mid I_{n+1} = 1), \quad k \in \{0, 1, \ldots, n\} De la defnición del argumento de probabilidad condicional tenemos \P(N_n = k) = \P(N_{n+1} = k + 1) \frac{\P(I_{n+1} = 1 \mid N_{n+1} = k + 1)}{\P(I_{n+1} = 1)}, \quad k \in \{0, 1, \ldots, n\} Pero\P(I_{n+1} = 1) = \frac{1}{n+1} y\P(I_{n+1} = 1 \mid N_{n+1} = k + 1) = \frac{k+1}{n+1}.MásMostrar más resultados