Buscar Volver arriba Filtrar resultadosUbicaciónMatemáticas (2)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 2 resultados22.6: Sumando y restando expresiones racionaleshttps://espanol.libretexts.org/Matematicas/Aritmetica_y_Matematicas_Basicas/HiSet_Matematicas/22%3A_Expresiones_racionales/22.06%3A_Sumando_y_restando_expresiones_racionales\ dfrac {3x^2 + x + 2} {x-7} +\ dfrac {x^2 - 4x + 1} {x-7} &=\ dfrac {3x^2 + x + 2 + x^2 - 4x + 1} {x-7}\\ \ dfrac {(x+5) (x+1)} {(x-4) (x-3) (x+1)} +\ dfrac {(3x - 1) (x - 4)} {(x-4) (x-3) (x+1)} &\ ...\ dfrac {3x^2 + x + 2} {x-7} +\ dfrac {x^2 - 4x + 1} {x-7} &=\ dfrac {3x^2 + x + 2 + x^2 - 4x + 1} {x-7}\\ \ dfrac {(x+5) (x+1)} {(x-4) (x-3) (x+1)} +\ dfrac {(3x - 1) (x - 4)} {(x-4) (x-3) (x+1)} &\ text {Los denominadores son ahora los mismos. \\\ dfrac {a+4} {(a+3) (a+3) (a+2)} -\ dfrac {a-4} {(a+3)} &\ text {El LCD es} (a+3) (a+2) (a-8)\\ \ dfrac {(a+4) (a-8)} {(a+3) (a+2) (a-8)} -\ dfrac {(a-4) (a+2)} {(a+3) (a+2) (a-8)} &\ text {Los denominadores son ahora los mismos.Más22.6: Sumando y restando expresiones racionaleshttps://espanol.libretexts.org/Matematicas/Aritmetica_y_Matematicas_Basicas/HiSet_Mathematicas_Saul_Lopez/22%3A_Expresiones_racionales/22.06%3A_Sumando_y_restando_expresiones_racionales\ dfrac {3x^2 + x + 2} {x-7} +\ dfrac {x^2 - 4x + 1} {x-7} &=\ dfrac {3x^2 + x + 2 + x^2 - 4x + 1} {x-7}\\ \ dfrac {(x+5) (x+1)} {(x-4) (x-3) (x+1)} +\ dfrac {(3x - 1) (x - 4)} {(x-4) (x-3) (x+1)} &\ ...\ dfrac {3x^2 + x + 2} {x-7} +\ dfrac {x^2 - 4x + 1} {x-7} &=\ dfrac {3x^2 + x + 2 + x^2 - 4x + 1} {x-7}\\ \ dfrac {(x+5) (x+1)} {(x-4) (x-3) (x+1)} +\ dfrac {(3x - 1) (x - 4)} {(x-4) (x-3) (x+1)} &\ text {Los denominadores son ahora los mismos. \\\ dfrac {a+4} {(a+3) (a+3) (a+2)} -\ dfrac {a-4} {(a+3)} &\ text {El LCD es} (a+3) (a+2) (a-8)\\ \ dfrac {(a+4) (a-8)} {(a+3) (a+2) (a-8)} -\ dfrac {(a-4) (a+2)} {(a+3) (a+2) (a-8)} &\ text {Los denominadores son ahora los mismos.MásMostrar más resultados