Buscar Volver arriba Filtrar resultadosUbicaciónIngeniería (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados14.3: Diagonalización de matrizhttps://espanol.libretexts.org/Ingenieria/Senales_y_Sistemas_(Baraniuk_et_al.)/14%3A_Ap%C3%A9ndice_A-_Visi%C3%B3n_general_del_%C3%A1lgebra_lineal/14.03%3A_Diagonalizaci%C3%B3n_de_matriz¿Cuándo hacen los vectores propios\(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) de\(A\) span\(\mathbb{C}^n\) (asumiendo que\(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) son linealmente independiente...¿Cuándo hacen los vectores propios\(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) de\(A\) span\(\mathbb{C}^n\) (asumiendo que\(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) son linealmente independientes)? \[A \mathbf{x}=\alpha_{1} \lambda_{1} v_{1}+\alpha_{2} \lambda_{2} v_{2}+\ldots+\alpha_{n} \lambda_{n} v_{n}=\mathbf{b} \nonumber \]MásMostrar más resultados