\[\begin{aligned} {\bf y}_1 &={\bf x} e^{\lambda_1t},\\ {\bf y}_2&={\bf u}e^{\lambda_1t}+{\bf x} te^{\lambda_1t},\mbox{ and }\\ {\bf y}_3&={\bf v}e^{\lambda_1t}+{\bf u}te^{\lambda_1t}+{\bf x} {t^2e^{\...y1=xeλ1t,y2=ueλ1t+xteλ1t, and y3=veλ1t+uteλ1t+xt2eλ1t2. Completar la prueba del Teorema 10.5.2 mostrando quey3 es una solución dey′=Ay y que{y1,y2,y3} es linealmente independiente.