Buscar Volver arriba Filtrar resultadosUbicaciónMatemáticas (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados5.3: Regla de L'Hôpitalhttps://espanol.libretexts.org/Matematicas/Analisis/Libro%3A_An%C3%A1lisis_matem%C3%A1tico_(Zakon)/05%3A_Diferenciaci%C3%B3n_y_Antidiferenciaci%C3%B3n/5.03%3A_Regla_de_L'H%C3%B4pital(a)\(\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=\lim _{x \rightarrow+\infty} \frac{(\ln x)^{\prime}}{1}=\lim _{x \rightarrow+\infty} \frac{1}{x}=0.\) c)\(\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3...(a)\(\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=\lim _{x \rightarrow+\infty} \frac{(\ln x)^{\prime}}{1}=\lim _{x \rightarrow+\infty} \frac{1}{x}=0.\) c)\(\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{6 x}=\frac{1}{6} \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{1}{6}.\)MásMostrar más resultados