Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 1 resultados
    • https://espanol.libretexts.org/Matematicas/Ecuaciones_diferenciales/Libro%3A_Ecuaciones_diferenciales_parciales_(Walet)/08%3A_Separaci%C3%B3n_de_variables_en_coordenadas_polares/8.03%3A_Poner_todo_junto
      En resumen, tenemos\[u(\rho,\phi) = \frac{A_0}{2} + \sum_{n=1}^\infty \rho^n \left(A_n\cos n\phi+B_n\sin n \phi \right). \nonumber \] La única condición límite restante ahora se puede utilizar para de...En resumen, tenemos\[u(\rho,\phi) = \frac{A_0}{2} + \sum_{n=1}^\infty \rho^n \left(A_n\cos n\phi+B_n\sin n \phi \right). \nonumber \] La única condición límite restante ahora se puede utilizar para determinar los coeficientes\(A_n\) y\(B_n\),\[\begin{aligned} U(c,\phi) &= \frac{A_0}{2} + \sum_{n=1}^\infty c^n \left(A_n\cos n\phi+B_n\sin n \phi \right)\nonumber\\ &= \begin{cases} 100 & \text{if $0 < \phi < \pi$} \\ 0 & \text{if $\pi < \phi < 2\pi$} \end{cases}\quad.\end{aligned} \nonumber \] Nos…

    Support Center

    How can we help?