Buscar Volver arriba Filtrar resultadosUbicaciónFísica (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados1.4: Curvas Planashttps://espanol.libretexts.org/Fisica/Mecanica_Clasica/Mec%C3%A1nica_Cl%C3%A1sica_(Tatum)/01%3A_Centros_de_Masa/1.04%3A_Curvas_Planas¯x=∫bax√1+(dydx)2dx∫ba√1+(dydx)2dx \[ \delta s ...\boldsymbol{\overline{x} = \dfrac{\displaystyle \int_a^b x \sqrt{ 1+\left( \dfrac{dy}{dx} \right)^2} dx } { \displaystyle \int_a^b \sqrt{ 1+ \left(\dfrac{dy}{dx}\right)^2} dx} \label{eq:1.4.4A}} δs=√(δr)2+(rδθ)2=√(drdθ)2+r2δθ=√1+(rdθdr)2δr.MásMostrar más resultados