Entonces\[ \left|f + g\right|^p = \left|f + g\right|^{p-1} \left|f + g\right| \le \left|f + g\right|^{p-1}\left(\left|f\right| + \left|g\right|\right) = \left|f + g\right|^{p-1}\left|f\right| + \left|...Entonces|f+g|p=|f+g|p−1|f+g|≤|f+g|p−1(|f|+|g|)=|f+g|p−1|f|+|f+g|p−1|g| Integrar sobreS y usar el aditivo y aumentar las propiedades de la integral da‖f+g‖pp≤∫S|f+g|p−1|f|dμ+∫S|f+g|p−1|g|dμ Pero por la desigualdad de Höder,\[ \int_S \l…