Loading [MathJax]/extensions/TeX/mathchoice.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 1 resultados
    • https://espanol.libretexts.org/Estadisticas/Teoria_de_Probabilidad/Probabilidad%2C_estad%C3%ADstica_matem%C3%A1tica_y_procesos_estoc%C3%A1sticos_(Siegrist)/16%3A_Procesos_de_Markov/16.20%3A_Cadenas_subordinadas_al_proceso_de_Poisson
      Tenga en cuenta primero que paran\N, G^n = [r (Q - I)]^n = r^n \sum_{k = 0}^n \binom{n}{k}(-1)^{n-k} Q^k Por lo tanto\ begin {align*} P_t & = e^ {t G} =\ sum_ {n=0} ^\ infty\ frac {t^n...Tenga en cuenta primero que para n \in \N , G^n = [r (Q - I)]^n = r^n \sum_{k = 0}^n \binom{n}{k}(-1)^{n-k} Q^k Por lo tanto\ begin {align*} P_t & = e^ {t G} =\ sum_ {n=0} ^\ infty\ frac {t^n} {n!} g^n =\ suma_ {n=0} ^\ infty\ frac {t^n} {n!} r^n\ suma_ {k=0} ^\ infty\ binom {n} {k} (-1) ^ {n-k} q^k\\ & =\ sum_ {n=0} ^\ infty\ suma_ {k=0} ^n\ frac {(r t) ^n} {k! (n - k)!} (-1) ^ {n-k} q^k =\ suma_ {k=0} ^\ infty\ suma_ {n=k} ^\ infty\ frac {(r t) ^n} {k! (n - k)!} (-1) ^ {n-k} q^k\\ & …

    Support Center

    How can we help?