Saltar al contenido principal
LibreTexts Español

8: Geometría Analítica

  • Page ID
    116810
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En este capítulo, investigaremos las figuras bidimensionales que se forman cuando un cono circular derecho es intersectado por un plano. Comenzaremos por estudiar cada una de las tres figuras creadas de esta manera. Desarrollaremos ecuaciones definitorias para cada figura y luego aprenderemos a usar estas ecuaciones para resolver una variedad de problemas. Las secciones cónicas se forman cuando un plano se cruza con dos conos circulares rectos alineados punta a punta y que se extienden infinitamente lejos en direcciones opuestas, que también llamamos cono. La forma en que cortamos el cono determinará el tipo de sección cónica formada en la intersección. Se forma un círculo cortando un cono con un plano perpendicular al eje de simetría del cono. Una elipse se forma cortando un solo cono con un plano inclinado no perpendicular al eje de simetría.

    • 8.1: Preludio a la Geometría Analítica
      En este capítulo, investigaremos las figuras bidimensionales que se forman cuando un cono circular derecho es intersectado por un plano. Comenzaremos por estudiar cada una de las tres figuras creadas de esta manera. Desarrollaremos ecuaciones definitorias para cada figura y luego aprenderemos a usar estas ecuaciones para resolver una variedad de problemas.
    • 8.2: La elipse
      Las características clave de la elipse son su centro, vértices, comvértices, focos y longitudes y posiciones de los ejes mayor y menor. Al igual que con otras ecuaciones, podemos identificar todas estas características con solo observar la forma estándar de la ecuación. Hay cuatro variaciones de la forma estándar de la elipse. Estas variaciones se categorizan primero por la ubicación del centro (el origen o no el origen), y luego por la posición (horizontal o vertical). Cada uno se presenta aquí.
    • 8.3: La hipérbola
      En geometría analítica, una hipérbola es una sección cónica formada por la intersección de un cono circular recto con un plano en un ángulo tal que ambas mitades del cono se intersectan. Esta intersección produce dos curvas independientes y no delimitadas que son imágenes especulares entre sí.
    • 8.4: La Parábola
      Al igual que la elipse y la hipérbola, la parábola también se puede definir por un conjunto de puntos en el plano de coordenadas. Una parábola es el conjunto de todos los puntos en un plano que están a la misma distancia de una línea fija, llamada directriz, y un punto fijo (el foco) no en la directriz.
    • 8.5: Rotación de Ejes
      En esta sección, aprenderemos a definir cualquier cónica en el sistema de coordenadas polares en términos de un punto fijo, el foco en el polo, y una línea, la directriz, que es perpendicular al eje polar.
    • 8.6: Secciones cónicas en coordenadas polares
      En esta sección, aprenderemos a definir cualquier cónica en el sistema de coordenadas polares en términos de un punto fijo, el foco en el polo, y una línea, la directriz, que es perpendicular al eje polar.

    Thumbnail: Conic sections can also be described by a set of points in the coordinate plane. This section focuses on the four variations of the standard form of the equation for the ellipse. An ellipse is the set of all points (x,y)(x,y) in a plane such that the sum of their distances from two fixed points is a constant. Each fixed point is called a focus(plural: foci).​​​​


    This page titled 8: Geometría Analítica is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.