14.15: Sección 12.2 Respuestas
- Page ID
- 115107
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1. \(u(x,t)=\frac{4}{3\pi ^{3}} \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{(2n-1)^{3}}\sin 3(2n-1)\pi t\sin (2n-1)\pi x\)
2. \(u(x,t)=\frac{8}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\cos 3(2n-1)\pi t\sin (2n-1)\pi x\)
3. \(u(x,t)=-\frac{4}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{(1+(-1)^{n}2)}{n^{3}}\cos n\sqrt{7}\pi t\sin n\pi x\)
4. \(u(x,t)=\frac{8}{3\pi ^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\sin 3(2n-1)\pi t\sin (2n-1)\pi x\)
5. \(u(x,t)=-\frac{4}{\sqrt{7}\pi ^{4}} \sum_{n=1}^{\infty}\frac{(1+(-1)^{n}2)}{n^{4}}\sin n\sqrt{7}\pi t\sin n\pi x\)
6. \(u(x,t)=\frac{324}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^{3}}\cos\frac{8n\pi t}{3}\sin\frac{n\pi x}{3}\)
7. \(u(x,t)=\frac{96}{\pi ^{5}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{5}}\cos 2(2n-1)\pi t\sin (2n-1)\pi x\)
8. \(u(x,t)=\frac{243}{2\pi ^{4}} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^{4}}\sin\frac{8n\pi t}{3}\sin\frac{n\pi x}{3}\)
9. \(u(x,t)=\frac{48}{\pi ^{6}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{6}}\sin 2(2n-1)\pi t\sin (2n-1)\pi x\)
10. \(u(x,t)=\frac{\pi }{2}\cos\sqrt{5}t\sin x-\frac{16}{\pi} \sum_{n=1}^{\infty}\frac{n}{(4n^{2}-1)^{2}}\cos 2n\sqrt{5}t\sin 2nx\)
11. \(u(x,t)=-\frac{240}{\pi ^{5}} \sum_{n=1}^{\infty}\frac{1+(-1)^{n}2}{n^{5}}\cos n\pi t\sin n\pi x\)
12. \(u(x,t)=\frac{\pi }{2\sqrt{5}}\sin\sqrt{5}t\sin x-\frac{8}{pi\sqrt{5}} \sum_{n=1}^{\infty}\frac{1}{(4n^{2}-1)^{2}}\sin 2n\sqrt{5}t\sin 2nx\)
13. \(u(x,t)=-\frac{240}{\pi ^{6}} \sum_{n=1}^{\infty}\frac{1+(-1)^{n}2}{n^{6}}\sin n\pi t\sin n\pi x\)
14. \(u(x,t)=-\frac{720}{\pi ^{5}} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^{5}}\cos 2n\pi t\sin n\pi x\)
15. \(u(x,t)=-\frac{240}{\pi ^{6}} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^{6}}\sin 3n\pi t\sin n\pi x\)
18. \(u(x,t)=-\frac{128}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{3}}\cos\frac{3(2n-1)\pi t}{4}\cos \frac{(2n-1)\pi x}{4}\)
19. \(u(x,t)=-\frac{64}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\left[(-1)^{n}+\frac{3}{(2n-1)\pi}\right]\cos (2n-1)\pi t\cos\frac{(2n-1)\pi x}{2}\)
20. \(u(x,t)=-\frac{512}{3\pi ^{4}} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{4}}\sin\frac{3(2n-1)\pi t}{4}\cos\frac{(2n-1)\pi x}{4}\)
21. \(u(x,t)=-\frac{64}{\pi ^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[(-1)^{n}+\frac{3}{(2n-1)\pi}\right]\sin (2n-1)\pi t\cos\frac{(2n-1)\pi x}{2}\)
22. \(u(x,t)=\frac{96}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\left[(-1)^{n}3+\frac{4}{(2n-1)\pi}\right]\cos\frac{(2n-1)\sqrt{5}\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
23. \(u(x,t)=-96\sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\left[(-1)^{n}+\frac{2}{(2n-1)\pi}\right]\cos\frac{(2n-1)\sqrt{3} t}{2}\cos\frac{(2n-1) x}{2}\)
24. \(u(x,t)=\frac{192}{\pi ^{4}\sqrt{5}}\sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[(-1)^{n}3+\frac{4}{(2n-1)\pi}\right]\sin\frac{(2n-1)\sqrt{5}\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
25. \(u(x,t)=-\frac{192}{\sqrt{3}}\sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[(-1)^{n}+\frac{2}{(2n-1)\pi}\right]\sin\frac{(2n-1)\sqrt{3}t}{2}\sin\frac{(2n-1)x}{2}\)
26. \(u(x,t)=-\frac{384}{\pi ^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[1+\frac{(-1)^{n}4}{(2n-1)\pi}\right]\cos\frac{3(2n-1)\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
27. \(u(x,t)=\frac{96}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\left[(-1)^{n}5+\frac{8}{(2n-1)\pi}\right]\cos\frac{(2n-1)\sqrt{7}\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
28. \(u(x,t)=-\frac{768}{3\pi ^{5}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{5}}\left[1+\frac{(-1)^{n}4}{(2n-1)\pi}\right]\sin\frac{3(2n-1)\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
29. \(u(x,t)=\frac{192}{\pi ^{4}\sqrt{7}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[(-1)^{n}5+\frac{8}{(2n-1)\pi}\right]\sin\frac{(2n-1)\sqrt{7}\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
30. \(u(x,t)=-\frac{768}{\pi ^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[1+\frac{(-1)^{n}2}{(2n-1)\pi}\right]\cos\frac{(2n-1)\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
31. \(u(x,t)=-\frac{1536}{\pi ^{5}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{5}}\left[1+\frac{(-1)^{n}2}{(2n-1)\pi}\right]\sin\frac{(2n-1)\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
32. \(u(x,t)=\frac{1}{2}\left[C_{Mf}(x+at)+C_{Mf}(x-at)\right]+\frac{1}{2a} \int_{x-at} ^{x+at} C_{Mg}(\tau )d\tau \)
35. \(u(x,t)=\frac{32}{\pi} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\cos 4(2n-1)t\sin\frac{(2n-1)x}{2}\)
36. \(u(x,t)=-\frac{96}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\left[ 1+(-1)^{n}\frac{4}{(2n-1)\pi}\right]\cos\frac{3(2n-1)\pi t}{2}\sin\frac{(2n-1)\pi x}{2}\)
37. \(u(x,t)=\frac{8}{\pi} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\sin 4(2n-1)t\sin\frac{(2n-1)x}{2}\)
38. \(u(x,t)=-\frac{64}{\pi ^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[1+(-1)^{n}\frac{4}{(2n-1)\pi}\right]\sin\frac{3(2n-1)\pi t}{2}\sin\frac{(2n-1)\pi x}{2}\)
39. \(u(x,t)=\frac{96}{\pi ^{3}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{3}}\left[1+(-1)^{n}\frac{2}{(2n-1)\pi}\right]\cos\frac{3(2n-1)\pi t}{2}\sin\frac{(2n-1)\pi x}{2}\)
40. \(u(x,t)=\frac{192}{\pi} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{4}}\cos\frac{(2n-1)\sqrt{3}t}{2}\sin\frac{(2n-1)x}{2}\)
41. \(u(x,t)=\frac{64}{\pi ^{4}} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^{4}}\left[1+(-1)^{n}\frac{2}{(2n-1)\pi}\right]\sin\frac{3(2n-1)\pi t}{2}\sin\frac{(2n-1)\pi x}{2}\)
42. \(u(x,t)=\frac{384}{\sqrt{3}\pi} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{5}}\sin\frac{(2n-1)\sqrt{3}t}{2}\sin\frac{(2n-1)x}{2}\)
43. \(u(x,t)=\frac{1536}{\pi^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[(-1)^{n}+\frac{3}{(2n-1)\pi}\right]\cos\frac{(2n-1)\sqrt{5}\pi t}{2}\sin\frac{(2n-1)\pi x}{2}\)
44. \(u(x,t)=\frac{384}{\pi ^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\left[(-1)^{n}+\frac{4}{(2n-1)\pi}\right]\cos (2n-1)\pi t\sin\frac{(2n-1)\pi x}{2}\)
45. \(u(x,t)=\frac{3072}{\sqrt{5}\pi ^{5}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{5}}\left[(-1)^{n}+\frac{3}{(2n-1)\pi}\right]\sin\frac{(2n-1)\sqrt{5}\pi t}{2}\sin\frac{(2n-1)\pi x}{2}\)
46. \(u(x,t)=\frac{384}{\pi ^{5}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{5}}\left[(-1)^{n}+\frac{4}{(2n-1)\pi}\right]\sin (2n-1)\pi t\sin \frac{(2n-1)\pi x}{2}\)
47. \(u(x,t)=\frac{1}{2}[S_{Mf}(x+at)+S_{Mf}(x-at)]+\frac{1}{2a} \int_{x-at} ^{x+at} S_{Mg}(\tau )d\tau \)
50. \(u(x,t)=4-\frac{768}{\pi^{4}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{4}}\cos\frac{\sqrt{5}(2n-1)\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
51. \(u(x,t)=4t-\frac{1536}{\sqrt{5}\pi ^{5}} \sum_{n=1}^{\infty}\frac{1}{(2n-1)^{5}}\sin\frac{\sqrt{5}(2n-1)\pi t}{2}\cos\frac{(2n-1)\pi x}{2}\)
52. \(u(x,t)=-\frac{2\pi ^{4}}{5}-48 \sum_{n=1}^{\infty}\frac{1+(-1)^{n}2}{n^{4}}\cos 2nt\cos nx\)
53. \(u(x,t)=-\frac{7}{5}-\frac{144}{\pi ^{4}} \sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^{4}}\cos n\sqrt{7}\pi t\cos n\pi x\)
54. \(u(x,t)=-\frac{2\pi ^{4}t}{5}-24\sum_{n=1}^{\infty}\frac{1+(-1)^{n}2}{n^{5}}\sin 2nt\cos nx\)
55. \(u(x,t)=-\frac{7t}{5}-\frac{144}{\pi ^{5}\sqrt{7}}\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^{5}}\sin n\sqrt{7}\pi t\cos n\pi x\)
56. \(u(x,t)=\frac{\pi ^{4}}{30}-3\sum_{n=1}^{\infty}\frac{1}{n^{4}}\cos 8nt\cos 2nx\)
57. \(u(x,t)=\frac{3}{5}-\frac{48}{\pi ^{4}}\sum_{n=1}^{\infty}\frac{2+(-1)^{n}}{n^{4}}\cos n\pi t\cos n\pi x\)
58. \(u(x,t)=\frac{\pi ^{4}t}{30}-\frac{3}{8}\sum_{n=1}^{\infty}\frac{1}{n^{5}}\sin 8nt\cos 2nx\)
59. \(u(x,t)=\frac{3t}{5}-\frac{48}{\pi ^{5}}\sum_{n=1}^{\infty}\frac{2+(-1)^{n}}{n^{5}}\sin n\pi t\cos n\pi x\)
60. \(u(x,t)=\frac{1}{2}\left[ C_{f}(x+at)+C_{f}(x-at)\right] +\frac{1}{2a} \int _{x-at}^{x+at} C_{g}(\tau )d\tau \)
63. c.\(u(x,t)=\frac{f(x+at)+f(x-at)}{2}+\frac{1}{2}\int_{x-at}^{x+at} g(u)du\)
64. \(u(x,t)=x(1+4at\)
65. \(u(x,t)=x^{2}+a^{2}t^{2}+t\)
66. \(u(x,t)=\sin (x+at)\)
67. \(u(x,t)=x^{3}+6tx^{2}+3a^{2}t^{2}x+2a^{2}t^{3}\)
68. \(u(x,t)=x\sin x\cos at+at\cos x\sin at+\frac{\sin x\sin at}{a}\)