Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 1 resultados
    • https://espanol.libretexts.org/Matematicas/Algebra_lineal/Libro%3A_%C3%81lgebra_lineal_(Schilling%2C_Nachtergaele_y_Lankham)/04%3A_Espacios_vectoriales/4.04%3A_Sumas_y_suma_directa
      Si\(U = U_1 +U_2\), entonces, para alguno\(u \in U\), existen\(u_1 \in U_1\) y\(u_2 \in U_2\) tal que\(u = u_1 +u_2.\) Supongamos que cada\(u \in U\) puede escribirse de manera única\(u = u_1 + u_2\) ...Si\(U = U_1 +U_2\), entonces, para alguno\(u \in U\), existen\(u_1 \in U_1\) y\(u_2 \in U_2\) tal que\(u = u_1 +u_2.\) Supongamos que cada\(u \in U\) puede escribirse de manera única\(u = u_1 + u_2\) en cuanto a\( u_1 \in U_1\) y\(u_2 \in U_2\) Luego usamos Si\(0 = u_1 + u_2\) con\(u_1 \in U_1\) y\(u_2 \in U_2\), entonces\(u_1 = u_2 = 0.\) Por Condición 1, tenemos que, para todos\(v \in V\), existe\(u_1 \in U_1\) y\(u_2 \in U_2\) tal que\(v = u_1 + u_2\).

    Support Center

    How can we help?