Consideremos la funcióng(t)=f(x)−n∑k=0f(k)(t)k!(x−t)k−λ(n+1)!(x−t)n+1. Entonces\[g(\bar{x})=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(\bar{x})}{k !}(x-\bar{x}...Consideremos la funcióng(t)=f(x)−n∑k=0f(k)(t)k!(x−t)k−λ(n+1)!(x−t)n+1. Entoncesg(ˉx)=f(x)−n∑k=0f(k)(ˉx)k!(x−ˉx)k−λ(n+1)!(x−ˉx)n+1=f(x)−Pn(x)−λ(n+1)!(x−ˉx)n+1=0. yg(x)=f(x)−n∑k=0f(k)(x)k!(x−x)k−λ(n+1)!(x−x)n+1=f(x)−f(x)=0. Por el teorema de Rolle, existec en el medioˉx yx tal que\(g^{\…