La primera prueba derivada dice que si f es una función continua y que x=c es un valor crítico de f, entonces si f′ cambia de positivo a negativo en x=c entonces f tiene un máximo local en x=c, si f′ ...La primera prueba derivada dice que si f es una función continua y que x=c es un valor crítico de f, entonces si f′ cambia de positivo a negativo en x=c entonces f tiene un máximo local en x=c, si f′ cambia de negativo a positivo en x=c entonces f tiene un mínimo local en x=c, y si f′ no cambia signo en x=c entonces f no tiene ni un máximo local ni mínimo a x=c.