Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 3 resultados
    • https://espanol.libretexts.org/Humanidades/Filosofia/Conjuntos_Logica_Computacion_(Zach)/01%3A_Conjuntos_Relaciones_Funciones/02%3A_Relaciones/2.03%3A_Propiedades_especiales_de_las_relaciones
      Una relación\(R\) es reflexiva si todo está\(R\) relacionado consigo mismo; simétrica, si con\(Rxy\) también se\(Ryx\) sostiene para cualquiera\(x\) y\(y\); y transitiva si\(Rxy\) y\(Ryz\) garantías\(...Una relación\(R\) es reflexiva si todo está\(R\) relacionado consigo mismo; simétrica, si con\(Rxy\) también se\(Ryx\) sostiene para cualquiera\(x\) y\(y\); y transitiva si\(Rxy\) y\(Ryz\) garantías\(Rxz\).
    • https://espanol.libretexts.org/Matematicas/Combinatoria_y_Matematicas_Discretas/Un_libro_de_trabajo_en_espiral_para_matem%C3%A1ticas_discretas_(Kwong)/07%3A_Relaciones/7.02%3A_Propiedades_de_las_Relaciones
      Si R es una relación de A a A, entonces RA×A; decimos que R es una relación sobre A.
    • https://espanol.libretexts.org/Matematicas/Logica_Matematica_y_Pruebas/Suave_Introducci%C3%B3n_al_Arte_de_las_Matem%C3%A1ticas_(Campos)/06%3A_Relaciones_y_Funciones/6.02%3A_Propiedades_de_las_Relaciones
      Hay dos clases especiales de relaciones que estudiaremos en las dos secciones siguientes, las relaciones de equivalencia y las relaciones de orden. El prototipo para una relación de equivalencia es la...Hay dos clases especiales de relaciones que estudiaremos en las dos secciones siguientes, las relaciones de equivalencia y las relaciones de orden. El prototipo para una relación de equivalencia es la noción ordinaria de igualdad numérica, =. La relación prototípica de ordenación es ≤. Cada uno de estos tiene ciertas propiedades sobresalientes que son las causas fundamentales de su importancia. En esta sección, estudiaremos un compendio de propiedades que una relación puede o no tener.

    Support Center

    How can we help?