Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 2 resultados
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Prec%C3%A1lculo_(OpenStax)/08%3A_Otras_aplicaciones_de_la_trigonometr%C3%ADa/8.01%3A_Tri%C3%A1ngulos_no_rectos_-_Ley_de_los_senos
      En esta sección, descubriremos cómo resolver problemas que involucran triángulos no rectos. La Ley de los Sines puede ser utilizada para resolver triángulos oblicuos. De acuerdo con la Ley de Sines, l...En esta sección, descubriremos cómo resolver problemas que involucran triángulos no rectos. La Ley de los Sines puede ser utilizada para resolver triángulos oblicuos. De acuerdo con la Ley de Sines, la relación de la medición de uno de los ángulos a la longitud de su lado opuesto equivale a las otras dos relaciones de medida de ángulo a lado opuesto. Hay tres casos posibles: ASA, AAS, SSA. Dependiendo de la información dada, podemos elegir la ecuación adecuada para encontrar la solución solicita
    • https://espanol.libretexts.org/Matematicas/Algebra/Libro%3A_Algebra_y_Trigonometria_(OpenStax)/10%3A_Otras_aplicaciones_de_la_trigonometr%C3%ADa/10.01%3A_Tri%C3%A1ngulos_no_rectos_-_Ley_de_los_senos
      En esta sección, descubriremos cómo resolver problemas que involucran triángulos no rectos. La Ley de los Sines puede ser utilizada para resolver triángulos oblicuos. De acuerdo con la Ley de Sines, l...En esta sección, descubriremos cómo resolver problemas que involucran triángulos no rectos. La Ley de los Sines puede ser utilizada para resolver triángulos oblicuos. De acuerdo con la Ley de Sines, la relación de la medición de uno de los ángulos a la longitud de su lado opuesto equivale a las otras dos relaciones de medida de ángulo a lado opuesto. Hay tres casos posibles: ASA, AAS, SSA. Dependiendo de la información dada, podemos elegir la ecuación adecuada para encontrar la solución solicita

    Support Center

    How can we help?