Buscar Volver arriba Filtrar resultadosUbicaciónEducación Básica (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados11.4 Teorema de De Moivre y enésima Raíceshttps://espanol.libretexts.org/Educacion_Basica/Precalculo/11%3A_N%C3%BAmeros_Complejos/11.04%3A_11.4_Teorema_de_De_Moivre_y_en%C3%A9sima_Ra%C3%ADces\(\begin{aligned} 8 &=8 \text { cis } 0=(s \cdot \operatorname{cis} \beta)^{3} \\ z_{1} &=2 \cdot \operatorname{cis}\left(\frac{0+2 \pi \cdot 0}{3}\right)=2 \text { cis } 0=2(\cos 0+i \cdot \sin 0)=2(...\(\begin{aligned} 8 &=8 \text { cis } 0=(s \cdot \operatorname{cis} \beta)^{3} \\ z_{1} &=2 \cdot \operatorname{cis}\left(\frac{0+2 \pi \cdot 0}{3}\right)=2 \text { cis } 0=2(\cos 0+i \cdot \sin 0)=2(1+0)=2 \\ z_{2} &=2 \cdot \operatorname{cis}\left(\frac{0+2 \pi \cdot 1}{3}\right)=2 \operatorname{cis}\left(\frac{2 \pi}{3}\right) \\ &=2\left(\cos \left(\frac{2 \pi}{3}\right)+i \cdot \sin \left(\frac{2 \pi}{3}\right)\right)=2\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=-1+i \sqrt{3} \\ z_{3} &…MásMostrar más resultados