\[ \lim _{t \rightarrow c} f(t)=\left(\lim _{t \rightarrow c} f_{1}(t), \lim _{t \rightarrow c} f_{2}(t), \ldots, \lim _{t \rightarrow c} f_{m}(t)=f(c)=\left(f_{1}(c), f_{2}(c), \ldots, f_{m}(c)\right...limt→cf(t)=(limt→cf1(t),limt→cf2(t),…,limt→cfm(t)=f(c)=(f1(c),f2(c),…,fm(c)), Una funciónf:R→Rm conf(t)=(f1(t),f2(t),…,fm(t)) es continua en un puntoc si y solo si las funciones de coordenadasf1,f2,…,fm son continuas enc.