Loading [MathJax]/jax/output/SVG/config.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 1 resultados
    • https://espanol.libretexts.org/Matematicas/Ecuaciones_diferenciales/Libro%3A_Ecuaciones_Diferenciales_para_Ingenieros_(Lebl)/4%3A_Serie_de_Fourier_y_PDE/4.10%3A_Problema_de_Dirichlet_en_el_C%C3%ADrculo_y_el_N%C3%BAcleo_de_Poisson
      \[\begin{align}\begin{aligned} P(r,\theta,\alpha) &=1+\sum_{n=1}^{\infty}(re^{i(\theta-\alpha)})^n+\sum_{n=1}^{\infty}(re^{-i(\theta-\alpha)})^n \\ &= 1+ \frac{re^{i(\theta-\alpha)}}{1-re^{i(\theta-\a...\[\begin{align}\begin{aligned} P(r,\theta,\alpha) &=1+\sum_{n=1}^{\infty}(re^{i(\theta-\alpha)})^n+\sum_{n=1}^{\infty}(re^{-i(\theta-\alpha)})^n \\ &= 1+ \frac{re^{i(\theta-\alpha)}}{1-re^{i(\theta-\alpha)}}+ \frac{re^{-i(\theta-\alpha)}}{1-re^{-i(\theta-\alpha)}} \\ &=\frac{(1-re^{i(\theta-\alpha)})(1-re^{-i(\theta-\alpha)})+(1-re^{-i(\theta-\alpha)})re^{ i(\theta-\alpha)}+(1-re^{i(\theta-\alpha)})re^{ - i(\theta-\alpha)}}{(1-re^{i(\theta-\alpha)})(1-re^{-i(\theta-\alpha)})} \\ &= \frac{1-r^2}…

    Support Center

    How can we help?