\[\begin{array}{rl} p_{o}=p_{A}&\text{Set }p\text{'s equal to each other} \\ \dfrac{96}{n}=\dfrac{96}{(n-2)}-4&\text{Multiply by the LCD} \\ \color{blue}{n(n-2)}\color{black}{}\cdot\dfrac{96}{n}=\colo...\[\begin{array}{rl} p_{o}=p_{A}&\text{Set }p\text{'s equal to each other} \\ \dfrac{96}{n}=\dfrac{96}{(n-2)}-4&\text{Multiply by the LCD} \\ \color{blue}{n(n-2)}\color{black}{}\cdot\dfrac{96}{n}=\color{blue}{n(n-2)}\color{black}{}\cdot\dfrac{96}{(n-2)}-\color{blue}{n(n-2)}\color{black}{}\cdot 4&\text{Clear denominators} \\ 96(n-2)=96n-4n(n-2)&\text{Distribute} \\ 96n-192=96n-4n^2+8n&\text{Combine like terms} \\ 96n-192=104n-4n^2&\text{Notice the }4n^2\text{ term; solve by factoring} \\ 4n^2-8n-…