Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 1 resultados
    • https://espanol.libretexts.org/Matematicas/Analisis/Variables_complejas_con_aplicaciones_(Orloff)/10%3A_Integrales_definidas_usando_el_teorema_de_residuos/10.08%3A_Resolver_DE_usando_la_transformada_de_Fourier
      \(\begin{array} {ccl} {\lim_{R \to \infty} \int_{C_R} e^{izt} g(z)\ dz = 0} & \ \ \ \ \ \ & {\text{(Theorem 10.2.2(b))}} \\ {\lim_{R \to \infty, r \to 0} \int_{C_2} e^{izt} g(z) \ dz = \pi i \text{Res...\(\begin{array} {ccl} {\lim_{R \to \infty} \int_{C_R} e^{izt} g(z)\ dz = 0} & \ \ \ \ \ \ & {\text{(Theorem 10.2.2(b))}} \\ {\lim_{R \to \infty, r \to 0} \int_{C_2} e^{izt} g(z) \ dz = \pi i \text{Res} (e^{izt} g(z), -1)} & \ \ \ \ \ \ & {\text{(Theorem 10.7.2)}} \\ {\lim_{R \to \infty, r \to 0} \int_{C_4} e^{izt} g(z)\ dz = \pi i \text{Res} (e^{izt} g(z), 1)} & \ \ \ \ \ \ & {\text{(Theorem 10.7.2)}} \\ {\lim_{R \to \infty, r \to 0} \int_{C_1 + C_3 + C_5} e^{izt} g(z) \ dz = \text{p.v.} \hat{y…

    Support Center

    How can we help?