Buscar
- Filtrar resultados
- Ubicación
- Clasificación
- Incluir datos adjuntos
- https://espanol.libretexts.org/Matematicas/Aritmetica_y_Matematicas_Basicas/HiSet_Matematicas/22%3A_Expresiones_racionales/22.09%3A_Expresiones_racionales_Complejas\ dfrac {\ frac {x-1} {x}} {\ frac {x^2-1} {x^2}} &=\ dfrac {x-1} {x}\ cdot\ dfrac {x^2} {x^2-1}\\ \ dfrac {x^ {2} (1-\ frac {5} {x} -\ frac {6} {x^ {2}})} {x^ {2} (1+\ frac {6} {x} +\ frac {5} {x^ {2...\ dfrac {\ frac {x-1} {x}} {\ frac {x^2-1} {x^2}} &=\ dfrac {x-1} {x}\ cdot\ dfrac {x^2} {x^2-1}\\ \ dfrac {x^ {2} (1-\ frac {5} {x} -\ frac {6} {x^ {2}})} {x^ {2} (1+\ frac {6} {x} +\ frac {5} {x^ {2})} &=\ dfrac {x^ {2}\ cdot 1-x^ {\ cancel {2}}\ cdot\ frac {5} {\ cancel {x}} -\ cancel {x^ {2}}\ cdot\ frac {6} {\ cancel {x^ {2}}} {x^ {2}\ cdot 1+x^ {\ cancel {2}}\ cdot\ frac {6} {\ cancel {x}} +\ cancelar {x^2}\ cdot\ frac {5} {\ cancel {x^2}}}\\
- https://espanol.libretexts.org/Matematicas/Aritmetica_y_Matematicas_Basicas/HiSet_Mathematicas_Saul_Lopez/22%3A_Expresiones_racionales/22.09%3A_Expresiones_racionales_Complejas\ dfrac {\ frac {x-1} {x}} {\ frac {x^2-1} {x^2}} &=\ dfrac {x-1} {x}\ cdot\ dfrac {x^2} {x^2-1}\\ \ dfrac {x^ {2} (1-\ frac {5} {x} -\ frac {6} {x^ {2}})} {x^ {2} (1+\ frac {6} {x} +\ frac {5} {x^ {2...\ dfrac {\ frac {x-1} {x}} {\ frac {x^2-1} {x^2}} &=\ dfrac {x-1} {x}\ cdot\ dfrac {x^2} {x^2-1}\\ \ dfrac {x^ {2} (1-\ frac {5} {x} -\ frac {6} {x^ {2}})} {x^ {2} (1+\ frac {6} {x} +\ frac {5} {x^ {2})} &=\ dfrac {x^ {2}\ cdot 1-x^ {\ cancel {2}}\ cdot\ frac {5} {\ cancel {x}} -\ cancel {x^ {2}}\ cdot\ frac {6} {\ cancel {x^ {2}}} {x^ {2}\ cdot 1+x^ {\ cancel {2}}\ cdot\ frac {6} {\ cancel {x}} +\ cancelar {x^2}\ cdot\ frac {5} {\ cancel {x^2}}}\\
- https://espanol.libretexts.org/Matematicas/Algebra/Algebra_elemental_(Ellis_y_Burzynski)/08%3A_Expresiones_racionales/8.09%3A_Expresiones_racionales_Complejas\ dfrac {\ frac {x-1} {x}} {\ frac {x^2-1} {x^2}} &=\ dfrac {x-1} {x}\ cdot\ dfrac {x^2} {x^2-1}\\ \ dfrac {x^ {2} (1-\ frac {5} {x} -\ frac {6} {x^ {2}})} {x^ {2} (1+\ frac {6} {x} +\ frac {5} {x^ {2...\ dfrac {\ frac {x-1} {x}} {\ frac {x^2-1} {x^2}} &=\ dfrac {x-1} {x}\ cdot\ dfrac {x^2} {x^2-1}\\ \ dfrac {x^ {2} (1-\ frac {5} {x} -\ frac {6} {x^ {2}})} {x^ {2} (1+\ frac {6} {x} +\ frac {5} {x^ {2})} &=\ dfrac {x^ {2}\ cdot 1-x^ {\ cancel {2}}\ cdot\ frac {5} {\ cancel {x}} -\ cancel {x^ {2}}\ cdot\ frac {6} {\ cancel {x^ {2}}} {x^ {2}\ cdot 1+x^ {\ cancel {2}}\ cdot\ frac {6} {\ cancel {x}} +\ cancelar {x^2}\ cdot\ frac {5} {\ cancel {x^2}}}\\