a(x)=6x4−2x3+x2−3x+1yb(x)=x2+x−2 enZ7[x]a(x)=x5+x3−x2−xyb(x)=x3+x enZ2[x]p(x)=x3+x2−x+1y\(q(x) = x^3...a(x)=6x4−2x3+x2−3x+1yb(x)=x2+x−2 enZ7[x]a(x)=x5+x3−x2−xyb(x)=x3+x enZ2[x]p(x)=x3+x2−x+1yq(x)=x3+x−1, dondep(x),q(x)∈Z2[x] DejarF ser un campo yf(x)=a0+a1x+⋯+anxn estar enF[x]. Definirf′(x)=a1+2a2x+⋯+nanxn−1 para ser el derivado def(x).