Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 1 resultados
    • https://espanol.libretexts.org/Matematicas/Ecuaciones_diferenciales/Libro%3A_Ecuaciones_diferenciales_parciales_(Walet)/08%3A_Separaci%C3%B3n_de_variables_en_coordenadas_polares/8.01%3A_Ejemplo
      Nos gustaría ver “comportamiento sin fisuras”, que especifica la periodicidad de la solución en\(\phi\),\[\begin{aligned} u(\rho,\phi+2\pi)&=u(\rho,\phi),\\ \frac{\partial u}{\partial \phi}(\rho,\phi+...Nos gustaría ver “comportamiento sin fisuras”, que especifica la periodicidad de la solución en\(\phi\),\[\begin{aligned} u(\rho,\phi+2\pi)&=u(\rho,\phi),\\ \frac{\partial u}{\partial \phi}(\rho,\phi+2\pi)&=\frac{\partial u}{\partial \phi}(\rho,\phi).\end{aligned} \nonumber \] Si elegimos poner el parecer en\(\phi=-\pi\) tenemos las condiciones de contorno periódicas\[\begin{aligned} u(\rho,2\pi)&=u(\rho,0),\\ \frac{\partial u}{\partial \phi}(\rho,2\pi)&=\frac{\partial u}{\partial \phi}(\rho,0)…

    Support Center

    How can we help?