Buscar Volver arriba Filtrar resultadosUbicaciónMatemáticas (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados4.4: Ortogonalidad y Normalizaciónhttps://espanol.libretexts.org/Matematicas/Ecuaciones_diferenciales/Libro%3A_Ecuaciones_diferenciales_parciales_(Walet)/04%3A_Serie_de_Fourier/4.04%3A_Ortogonalidad_y_Normalizaci%C3%B3n\[ \begin{align} \int_{-L}^L \cos\bigg(\frac{m\pi x}{L}\bigg) \cdot \cos\bigg(\frac{n\pi x}{L}\bigg) dx & = \frac{1}{2}\int_{-L}^L \cos\bigg(\frac{(m+n)\pi x}{L}\bigg) + \cos\bigg(\frac{(m-n)\pi x}{L}...∫L−Lcos(mπxL)⋅cos(nπxL)dx=12∫L−Lcos((m+n)πxL)+cos((m−n)πxL)dx={0if n≤mLif n=m,MásMostrar más resultados