Buscar Volver arriba Filtrar resultadosUbicaciónMatemáticas (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados4.1: Serie Taylorhttps://espanol.libretexts.org/Matematicas/Ecuaciones_diferenciales/Libro%3A_Ecuaciones_diferenciales_parciales_(Walet)/04%3A_Serie_de_Fourier/4.01%3A_Serie_Taylor\[\begin{aligned} &&\qquad&\cos(0) &= 1,\nonumber\\ \cos'(x) &= -\sin(x),&&\cos'(0)&=0,\nonumber\\ \cos^{(2)}(x) &= -\cos(x),&&\cos^{(2)}(0)&=-1,\\ \cos^{(3)}(x) &= \sin(x),&&\cos^{(3)}(0)&=0,\nonumbe...cos(0)=1,cos′(x)=−sin(x),cos′(0)=0,cos(2)(x)=−cos(x),cos(2)(0)=−1,cos(3)(x)=sin(x),cos(3)(0)=0,cos(4)(x)=cos(x),cos(4)(0)=1. cosx=∞∑m=0(−1)m(2m)!x2m, Demostrar quesinx=∞∑m=0(−1)m(2m+1)!x2m+1.MásMostrar más resultados