Loading [MathJax]/jax/output/HTML-CSS/jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 1 resultados
    • https://espanol.libretexts.org/Matematicas/Combinatoria_y_Matematicas_Discretas/Un_libro_de_trabajo_en_espiral_para_matem%C3%A1ticas_discretas_(Kwong)/05%3A_Teor%C3%ADa_b%C3%A1sica_de_n%C3%BAmeros/5.01%3A_El_principio_de_ordenar_bien
      Considerar los conjuntos\[\begin{array}{r c l} A &=& \{ n\in\mathbb{N} \mid n \mbox{ is a multiple of 3} \}, \\ B &=& \{ n\in\mathbb{N} \mid n = -11+7m \mbox{ for some } m\in\mathbb{Z} \}, \\ C &=& \{...Considerar los conjuntosA={nNn is a multiple of 3},B={nNn=11+7m for some mZ},C={nNn=x28x+12 for some xZ}. Es fácil comprobar que los tres conjuntos no están vacíos, y dado que solo contienen enteros positivos, el principio de ordenamiento correcto garantiza que cada uno de ellos tenga un elemento más pequeño.

    Support Center

    How can we help?