Buscar Volver arriba Filtrar resultadosUbicaciónMatemáticas (1)ClasificaciónTipo de artículoCategoríaGuíaTemaN/AN/AAuthorRebecca Laff & Wendy RuizParis, Ricardo, Raymond, & JohnsonJennifer Paris, Kristin Beeve, & Clint SpringerKrischa Esquivel, Emily Elam, Jennifer Paris, & Maricela TafoyaIrma Isabel González CuadrosJoaquín López HerraizMaría M. Reynoso, Carina E. Magnoli, Germán G. Barros y Mirta S. DemoGlencora BorradaileShow TOCyesnoCover PageyesTOC OnlyCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLTranscludedAutonumber Section Headingstitle with space delimiterstitle with colon delimiterstitle with dash delimitersLicense Version1.01.32.02.53.04.0Incluir datos adjuntosTipo de contenidoDocumentoImagenOtro Buscando enTodos los resultadosAcerca de 1 resultados12.1: Principio del Argumentohttps://espanol.libretexts.org/Matematicas/Analisis/Variables_complejas_con_aplicaciones_(Orloff)/12%3A_Principio_de_Argumento/12.01%3A_Principio_del_Argumento\[\begin{array} {rclcl} {\int_{\gamma} \dfrac{(1 + f)' f(z)}{1 + f(z)} \ dz} & = & {\int_{\gamma} \dfrac{f' f(z)}{1 + f(z)} \ dz} & \ \ & {(\text{because } (1 + f)' = f')} \\ {\text{Ind} (1 + f \circ ...\[\begin{array} {rclcl} {\int_{\gamma} \dfrac{(1 + f)' f(z)}{1 + f(z)} \ dz} & = & {\int_{\gamma} \dfrac{f' f(z)}{1 + f(z)} \ dz} & \ \ & {(\text{because } (1 + f)' = f')} \\ {\text{Ind} (1 + f \circ \gamma, 0)} & = & {\text{Ind} (f \circ \gamma, -1)} & \ \ & {(1 + f \text{ winds around 0 } \Leftrightarrow \text{ winds around -1})} \\ {Z_{1 + f, \gamma}} & = & {Z_{1 + f, \gamma}} & \ \ & {(\text{same in both equation}))} \\ {P_{1 + f, \gamma}} & = & {P_{f, \gamma}} & \ \ & {(\text{poles of } f …MásMostrar más resultados