Saltar al contenido principal
LibreTexts Español

8.3: Termodinámica

  • Page ID
    58697
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    La primera ley de la termodinámica establece que la cantidad total de energía en el universo es constante y conservada. Es decir, siempre ha habido, y siempre habrá, exactamente la misma cantidad de energía en el universo. La energía existe en muchas formas diferentes. Según la primera ley de la termodinámica, la energía puede transferirse de un lugar a otro o transformarse en diferentes formas, pero no puede crearse ni destruirse. Las transferencias y transformaciones de la energía ocurren a nuestro alrededor todo el tiempo. Las bombillas transforman la energía eléctrica en energía lumínica y térmica. Las estufas de gas transforman la energía química del gas natural en energía térmica. Las plantas realizan una de las transformaciones energéticas más útiles biológicamente en la tierra: la de convertir la energía de la luz solar en energía química almacenada dentro de moléculas orgánicas (Figura 8.1.1). Algunos ejemplos de transformaciones energéticas se muestran en la Figura\(\PageIndex{1}\).

    El reto para todos los organismos vivos es obtener energía de su entorno en formas que puedan transferir o transformar en energía utilizable para hacer el trabajo. Las células vivas han evolucionado para hacer frente a este reto. La energía química almacenada dentro de moléculas orgánicas como azúcares y grasas se transfiere y transforma a través de una serie de reacciones químicas celulares en energía dentro de moléculas de ATP (trifosfato de adenosina). La energía en las moléculas de ATP es fácilmente accesible para hacer el trabajo. Ejemplos de los tipos de trabajo que las células necesitan hacer incluyen construir moléculas complejas, transportar materiales, potenciar el movimiento de cilios o flagelos y contraer fibras musculares para crear movimiento.

    transformaciones energéticas
    Figura\(\PageIndex{1}\): Se muestran algunos ejemplos de energía transferida y transformada de un sistema a otro y de una forma a otra. (crédito “helado”: modificación de obra de D. Sharon Pruitt; crédito “niños”: modificación de obra por Max de Providence; crédito “hoja”: modificación de obra de Cory Zanker)

    Las tareas primarias de una célula viva de obtener, transformar y usar energía para hacer el trabajo pueden parecer simples. No obstante, la segunda ley de la termodinámica explica por qué estas tareas son más difíciles de lo que parecen. Todas las transferencias y transformaciones de energía nunca son completamente eficientes. En cada transferencia de energía, se pierde cierta cantidad de energía en una forma que es inutilizable. En la mayoría de los casos, esta forma es energía térmica. Termodinámicamente, la energía térmica se define como la energía transferida de un sistema a otro que no es trabajo. Por ejemplo, cuando se enciende una bombilla, parte de la energía que se convierte de energía eléctrica en energía lumínica se pierde como energía térmica. Asimismo, se pierde algo de energía como energía térmica durante las reacciones metabólicas celulares.

    Un concepto importante en los sistemas físicos es el de orden y desorden. Cuanta más energía pierde un sistema a su entorno, menos ordenado y más aleatorio es el sistema. Los científicos se refieren a la medida de aleatoriedad o trastorno dentro de un sistema como entropía. Alta entropía significa trastorno alto y baja energía. Las moléculas y las reacciones químicas también tienen entropía variable. Por ejemplo, la entropía aumenta a medida que las moléculas a alta concentración en un lugar se difunden y se extienden. La segunda ley de la termodinámica dice que la energía siempre se perderá como calor en las transferencias o transformaciones de energía. Los seres vivos están altamente ordenados, lo que requiere un aporte de energía constante para mantenerse en un estado de baja entropía.

    Consulta\(\PageIndex{1}\)

    Referencias

    A menos que se indique lo contrario, las imágenes de esta página están bajo licencia CC-BY 4.0 de OpenStax.

    Texto adaptado de: OpenStax, Conceptos de Biología. OpenStax CNX. mayo 18, 2016 http://cnx.org/contents/b3c1e1d2-839...9a8aafbdd@9.10


    8.3: Termodinámica is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.