Loading [MathJax]/jax/output/HTML-CSS/jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

7.1: Cifras similares

( \newcommand{\kernel}{\mathrm{null}\,}\)

Figuras que tienen la misma forma pero no el mismo tamaño.

Identificación de Triángulos como Similares, Congruentes o Ninguno

F-D_180483c6a3ce02218a2c5cfeabcc96df6f989b9ef65bcb0090116277+image_thumb_postcard_tiny+image_thumb_postcard_tiny.png
Figura7.1.1

Gabriel está en geometría. Utiliza diferentes herramientas para medir diferentes artículos. Un día sienta un par de sus herramientas juntos y se da cuenta de que dos de sus herramientas son triángulos. Su clase ha comparado recientemente triángulos y los ha identificado como similares, congruentes o ninguno. Se supone que la clase debe estar usando sus herramientas de medición para medir elementos alrededor del aula y determinar si son similares, congruentes o ninguno. Gabriel echa un buen vistazo a las dos formas luego decide identificarlas para que pueda agregarlas a su lista. ¿Los triángulos de Gabriel son similares, congruentes o ninguno?

En este concepto, aprenderás a distinguir entre triángulos.

Identificar triángulos como Similares, Congruentes o Ninguno

Congruente significa ser exactamente lo mismo. Cuando dos segmentos de línea tienen la misma longitud, son congruentes. Cuando dos figuras tienen la misma forma y tamaño, son congruentes.

f-d_f0ca48f70e69f499cc33131442649a4692d455bddfb07d129aa0365c+image_tiny+image_tiny.png
Figura7.1.2

Estos dos triángulos son congruentes. Son exactamente iguales en todos los sentidos. Son del mismo tamaño y la misma forma. Sus longitudes laterales son las mismas y que sus medidas de ángulo son las mismas.

En ocasiones, dos cifras serán similares. Similar significa que las figuras tienen la misma forma, pero no el mismo tamaño. Cifras similares no son congruentes.

f-d_1d2b8ba838c41cd742fa6cacf0a716048fb7bf6884ab1cbeb5f38af6+image_tiny+image_tiny+image_tiny.png
Figura7.1.3

Estos dos triángulos son similares. Tienen la misma forma, pero no son del mismo tamaño.

Ejemplo7.1.1

Antes, te dieron un problema sobre Gabriel y sus herramientas de medición.

Se da cuenta de que dos de sus herramientas son triángulos. ¿Sus triángulos son similares, congruentes o ninguno?

Solución

Primero, comprueba si los triángulos son del mismo tamaño.

No

A continuación, comprueba si los triángulos son de la misma forma.

No

Después, identificar los triángulos.

La respuesta es que los triángulos no son similares, ni congruentes. Gabriel enumerará los triángulos como ninguno.

Ejemplo7.1.2

Identificar los siguientes triángulos como similares, congruentes o ninguno.

f-d_6e31d166436c8abb84c80c1bc56213a89c3b00b0241067e953be9f47+image_tiny+image_tiny.png
Figura7.1.4

Solución

Primero, comprueba si los triángulos tienen el mismo tamaño.

A continuación, comprueba si los triángulos tienen la misma forma.

Después, identificar los triángulos.

Congruente

La respuesta es que los triángulos son congruentes.

Ejemplo7.1.3

Identificar los siguientes triángulos como similares, congruentes, o ninguno.

F-d_eda307c47e4469586bebca3964cc8f903b14b24c74f9ee1b59d02a+image_tiny+image_tiny.png
Figura7.1.5

Solución

Primero, comprueba si los triángulos son del mismo tamaño.

No

A continuación, comprueba si los triángulos son de la misma forma.

No

Después, identificar los triángulos.

Ni congruente, ni similar

La respuesta es que los triángulos no son congruentes, ni similares.

Ejemplo7.1.4

Identificar los siguientes triángulos como similares, congruentes, o ninguno.

f-d_ae29124d18bc1d73d443ba8a1e9ad30ee9c7cf5397b25a7b7b7eeeee39+image_tiny+image_tiny.png
Figura7.1.6

Solución

Primero, comprueba si los triángulos son del mismo tamaño.

No

A continuación, comprueba si los triángulos son de la misma forma.

Después, identificar los triángulos.

Similares

La respuesta es que los triángulos son similares.

Ejemplo7.1.5

Identificar los siguientes triángulos como similares, congruentes, o ninguno.

f-d_839a5bac201023e0096dd5a1cd3642cbdbe96f8a20db02e59a46a30b+image_tiny+image_tiny.png
Figura7.1.7

Solución

Primero, comprueba si los triángulos son del mismo tamaño.

A continuación, comprueba si los triángulos son de la misma forma.

Después, identificar los triángulos.

Congruente

La respuesta es que los triángulos son congruentes.

Revisar

Identificar los triángulos dados como visualmente similares, congruentes o ninguno.

  1. f-d_4e739b5f2d24212690b757688f1b3c0c6273dc6fd2f305123c98f467+image_tiny+imagen_tiny.png
    Figura7.1.8
  2. f-d_415eda808b74d999fb2ead0372f9dbebaaf7b1ca70387fd8e03a7356+image_tiny+image_tiny.png
    Figura7.1.9
  3. f-d_88fdb3dbf98a48062c7bacbafd0bd0b0884d758692fc51fc12347b2a+image_tiny+image_tiny.png
    Figura7.1.10
  4. f-d_0ff2e5183d8245acd5a4a2486c53bee38169b83fcab043d87265ee36+image_tiny+image_tiny+image_tiny.png
    Figura7.1.11
  5. f-d_6b656893ead7a4844ed2e2d2c8a95f34613b90353f720cef2bc8a8cf+image_tiny+image_tiny.png
    Figura7.1.12

Responde a cada una de las siguientes preguntas.

  1. TriángulosABC yDEF son congruentes. ¿Significa esto que sus medidas de ángulo son las mismas? ¿Por qué?
  2. Verdadero o falso. Si los triángulosDEF yGHI son similares, entonces las longitudes laterales son diferentes pero las medidas del ángulo son las mismas.
  3. Verdadero o falso. Figuras similares tienen exactamente el mismo tamaño y forma.
  4. Verdadero o falso. Las cifras congruentes son exactamente las mismas en todos los sentidos.
  5. TriángulosLMN yHIJ son similares. Si esto es cierto, entonces las longitudes laterales son las mismas, verdaderas o falsas.
  6. Verdadero o falso. Para averiguar si dos figuras son similares, entonces sus longitudes laterales forman una proporción.
  7. Definir figuras similares
  8. Definir figuras congruentes.
  9. Usa una regla para dibujar un par congruente de triángulos.
  10. Usa una regla para dibujar un par de triángulos que sean similares.

Reseña (Respuestas)

Para ver las respuestas de Revisar, abra este archivo PDF y busque la sección 9.15.

Recursos

El vocabulario

Término Definición
Congruente Las figuras congruentes son idénticas en tamaño, forma y medida.
Similares Dos figuras son similares si tienen la misma forma, pero no necesariamente del mismo tamaño.

Recursos adicionales

Elemento interactivo

Video: Triángulos Congruentes y Similares - KA

Práctica: Cifras similares


This page titled 7.1: Cifras similares is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?