Saltar al contenido principal
LibreTexts Español

9.3.3: Formación de un patrón de interferencias

  • Page ID
    51183
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Las ondas provenientes de los orificios son coherentes entre sí por proceder ambas de la misma fuente. Las podemos expresar como ondas esféricas centradas en los orificios si éstos son suficientemente pequeños

    \[
    \begin{aligned}
    E_{1} &=\frac{A}{r_{1}} e^{i\left(k r_{1}-\omega t\right)} \\
    E_{2} &=\frac{A}{r_{2}} e^{i\left(k r_{2}-\omega t\right)}
    \end{aligned}
    \]

    con

    \[
    \begin{aligned}
    &r_{1}=\sqrt{\left(x-\frac{d}{2}\right)^{2}+y^{2}+D^{2}} \\
    &r_{2}=\sqrt{\left(x+\frac{d}{2}\right)^{2}+y^{2}+D^{2}}
    \end{aligned}
    \]

    Sobre la pantalla el campo total será la suma de los procedentes de cada orificio, y la intensidad su cuadrado

    \[
    I=\left|E_{1}+E_{2}\right|^{2} \notag
    \]

    de donde

    \[
    \begin{aligned}
    &I \propto \frac{|A|^{2}}{r_{1}^{2}}+\frac{|A|^{2}}{r_{2}^{2}}+2 \frac{|A|^{2}}{r_{1} r_{2}} \cos \left(k\left(r_{2}-r_{1}\right)\right) \\
    &I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \left(k\left(r_{2}-r_{1}\right)\right)
    \end{aligned}
    \]

    \(\operatorname{con} I_{i} \propto \frac{|A|^{2}}{r_{i}^{2}}\). Hay una distribución espacial de intensidad sobre la pantalla de observación, pues la intensidad sólo depende de su distancia a cada una de las fuentes puntuales. A esta distribución espacial de la energía la llamaremos figura interferencial.


    9.3.3: Formación de un patrón de interferencias is shared under a CC BY-SA 1.0 license and was authored, remixed, and/or curated by LibreTexts.