15.3: Preparación
- Page ID
- 131016
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La relación de la velocidad\( \nu\) de un cuerpo (o una partícula, o un marco de referencia) a menudo se le da el símbolo\( \beta\):
\[ \beta=\frac{\nu}{c}. \label{15.3.1} \]
Por razones que se harán evidentes (¡espero!) posteriormente, el rango de\( \beta\) suele estar restringido a entre 0 y 1. En nuestro estudio de la relatividad especial, encontraremos que tenemos que hacer uso frecuente de una serie de funciones de\( \beta\). Los más comunes de estos son
\[ \gamma=(1-\beta^{2})^{-\frac{1}{2}}, \label{15.3.2} \]
\[ k=\sqrt{\frac{(1+\beta)}{(1-\beta)}}, \label{15.3.3} \]
\[ z=k-1, \label{15.3.4} \]
\[ \theta=\cos^{-1}\gamma=\sin^{-1}(i\beta\gamma). \label{15.3.7} \]
En las Figuras XV.1-3 dibujo\( \gamma, k\) y\( \phi\) como funciones de\( \beta\). Las funciones\( \gamma\) y\( k\) van de 1 a ∞ como b va de 0 a 1;\( z,K\) y\( \phi\) van de 0 a ∞. La función\( \theta\) es imaginaria.
Muchos, incluso se podría decir más, problemas en la relatividad especial (¡incluidas las preguntas de examen y tareas!) cantidad, cuando se despoje de su verborrea, a lo siguiente:
“Dada una de las cantidades\( \beta,\gamma,k,z,K,\phi,\theta\), calcula una de las otras”.
Así sugeriría que, incluso antes de que tengas idea de lo que significan estas cantidades, podrías escribir un programa para tu computadora (o calculadora programable) de tal manera que, cuando ingreses alguna de las cantidades reales, la computadora devuelva instantáneamente las seis. Esto te ahorrará, en futuras ocasiones, de tener que recordar las fórmulas exactas o tener que molestarte con la tediosa aritmética, para que puedas concentrar tu mente en entender la relatividad.
Apenas para futuras referencias, tabulo aquí las relaciones entre estas diversas cantidades. Esto ha implicado algo de álgebra y tipografía; no creo que haya ningún error, pero espero que algún lector pueda revisarlos todos cuidadosamente y me avise (jtatum@ uvic.ca) si encuentra alguno.
\( \beta = \sqrt{1-\frac{1}{\gamma^{2}}}=\frac{k^{2}-1}{k^{2}+1}=\frac{z(z+2)}{(z+1)^{2}+1}=\frac{\sqrt{K(K+2)}}{K+1}=\tanh\phi\)o\( \frac{e^{2\phi}-1}{e^{2\phi}+1}=-i\tan\theta\)
\( \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{k^{2}+1}{2k}=\frac{(z+1)^{2}+1}{2(z+1)}=K+1=\cosh\phi\)o\( \frac{1}{2}(e^{\phi}+e^{-\phi})=\cos\theta\)
\( k=\sqrt{\frac{1+\beta}{1-\beta}}=\gamma+\sqrt{\gamma^{2}-1}=z+1=K+1+\sqrt{K(K+2)}=e^{\phi}=e^{-i\theta}\)
\( z=\sqrt{\frac{1+\beta}{1-\beta}}-1=\gamma-1+\sqrt{\gamma^{2}-1}=k-1=K+\sqrt{K(K+2)}=e^{\phi}-1=e^{-i\theta}-1\)
\( K=\frac{1}{\sqrt{1-\beta^{2}}}-1=\gamma-1=\frac{(k-1)^{2}}{2k}=\frac{z^{2}}{2(z+1)}=\frac{(e^{\phi}-1)^{2}}{2e^{\phi}}=\cos\theta-1\)
\( \phi=\tanh^{-1}\beta\)\( \frac{1}{2}\ln\left(\frac{1+\beta}{1-\beta}\right)=\cosh^{-1}\gamma\)o\( \ln(\gamma+\sqrt{\gamma^{2}-1})=\ln k=\ln(z+1)=\ln\left(K+1+\sqrt{K(K+2)}\right)=-i\theta\)
\( \theta=\frac{i}{2}\ln\left(\frac{1+\beta}{1-\beta}\right)=i\ln(\gamma+\sqrt{\gamma^{2}-1})=i\ln k=i\ln(z+1)=i\ln\left[K+1+\sqrt{K(K+2)}\right]=i\phi\)