Saltar al contenido principal
LibreTexts Español

15.15: Derivados

  • Page ID
    131015
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Haremos una pausa aquí y estableceremos algunas derivadas solo como referencia y en caso de que las necesitemos después.

    Recordamos que las relaciones de Lorentz son

    \[ x=\gamma(x'+\nu t') \label{15.15.1} \]

    y

    \[ t=\gamma\left( t' + \frac{\beta x'}{c}\right) \label{15.15.2} \]

    De estos enseguida encontramos que

    \[ \left( \frac{\partial x}{\partial x'}\right)_{t'}=\gamma;\quad\left( \frac{\partial x}{\partial t'}\right)_{x'}=\gamma\nu;\quad\left( \frac{\partial t}{\partial x'}\right)_{t'}=\frac{\beta\gamma}{c};\quad\left( \frac{\partial t}{\partial t'}\right)_{x'}=\gamma. \label{15.15.3a,b,c,d}\tag{15.15.3a,b,c,d} \]

    Los necesitaremos en futuras secciones.

    Precaución

    No es imposible equivocarse con algunos de estos derivados si uno permite vagar la atención. Por ejemplo, se podría suponer que, desde\( \frac{\partial x}{\partial x'}=\gamma\) entonces “obviamente”\( \frac{\partial x'}{\partial x}=\frac{1}{\gamma}\) -y de hecho esto es correcto si\( t'\) se mantiene constante. No obstante, tenemos que estar seguros de que esto es realmente lo que queremos. Es probable que la dificultad surja si, al escribir una derivada parcial, descuidamos especificar qué variables se mantienen constantes, y no se haría un gran daño insistiendo en que éstas siempre se especifican al escribir una derivada parcial. Si quieres los inversos más que los recíprocos de Ecuaciones\( \ref{15.15.3a,b,c,d}\) la regla, como siempre, es: Intercambiar los símbolos cebados y no cebados y cambiar el signo de\( \nu\) o\( \beta\). Por ejemplo, el recíproco de\( \left( \frac{\partial x}{\partial x'} \right)_{t'}\) es\( \left( \frac{\partial x'}{\partial x} \right)_{t'}\), mientras que su inverso es\( \left( \frac{\partial x'}{\partial x} \right)_{t}\). Para completar, y referencia, entonces, escribo todas las posibilidades:

    \[ \left( \frac{\partial x'}{\partial x}\right)_{t'}=\frac{1}{\gamma};\quad\left( \frac{\partial t'}{\partial x}\right)_{x'}=\frac{1}{\gamma\nu};\quad\left( \frac{\partial x'}{\partial t}\right)_{t'}=\frac{c}{\beta\gamma};\quad\left( \frac{\partial t'}{\partial t}\right)_{x'}=\frac{1}{\gamma}. \label{15.15.3e,f,g,h}\tag{5.15.3e,f,g,h} \]

    \[ \left( \frac{\partial x'}{\partial x}\right)_{t}=\gamma;\quad\left( \frac{\partial x'}{\partial t}\right)_{x}=-\gamma\nu;\quad\left( \frac{\partial t'}{\partial x}\right)_{t}=-\frac{\beta\gamma}{c};\quad\left( \frac{\partial t'}{\partial t}\right)_{x}=\gamma. \label{15.15.3i,j,k,l}\tag{15.15.3i,j,k,l} \]

    \[ \left( \frac{\partial x}{\partial x'}\right)_{t}=\frac{1}{\gamma};\quad\left( \frac{\partial t}{\partial x'}\right)_{x}=-\frac{1}{\gamma\nu};\quad\left( \frac{\partial x}{\partial t'}\right)_{t}=-\frac{c}{\beta\gamma};\quad\left( \frac{\partial t}{\partial t'}\right)_{x}=\frac{1}{\gamma}. \label{15.15.3m,n,o,p}\tag{15.15.3m,n,o,p} \]

    Ahora supongamos que\( \psi = \psi(x,t)\) donde\( x\) y\( t\) son a su vez funciones (Ecuaciones\( \ref{15.15.1}\) y\( \ref{15.15.2}\)) de\( x'\) y\( t'\). Entonces

    \[ \frac{\partial \psi}{\partial x'}=\frac{\partial x}{\partial x'}\frac{\partial \psi}{\partial t}+\frac{\partial t}{\partial x'}\frac{\partial \psi}{\partial t}=\gamma\frac{\partial \psi}{\partial x}+\frac{\beta\gamma}{c}\frac{\partial\psi}{\partial t} \label{15.15.4} \]

    y

    \[ \frac{\partial \psi}{\partial t'}=\frac{\partial x}{\partial t'}\frac{\partial \psi}{\partial x}+\frac{\partial t}{\partial t'}\frac{\partial \psi}{\partial t}=\gamma\nu\frac{\partial \psi}{\partial x}+\gamma\frac{\partial\psi}{\partial t}. \label{15.15.5} \]

    El lector sin duda notará que aquí he ignorado mi propio consejo y no he indicado qué variables se van a mantener constantes. Valdría la pena pasar un momento aquí pensando en esto.

    Podemos escribir Ecuaciones\( \ref{15.15.4}\) y\( \ref{15.15.5}\) como operadores equivalentes:

    \[ \frac{\partial}{\partial x'}=\gamma\left(\frac{\partial}{\partial x}+\frac{\beta}{c}\frac{\partial}{\partial t}\right) \label{15.15.6} \]

    y

    \[ \frac{\partial}{\partial t'}=\gamma\left(\nu\frac{\partial}{\partial x}+\frac{\partial}{\partial t}\right). \label{15.15.7} \]

    También podemos, si lo deseamos, encontrar las segundas derivadas. Así

    \[ \frac{\partial^{2}\psi}{\partial x'^{2}}=\gamma^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{2\beta}{c}\frac{\partial^{2}}{\partial x\partial t}+\frac{\beta^{2}}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\right). \label{15.15.9} \]

    De manera similar obtenemos

    \[ \frac{\partial^{2}}{\partial x'\partial t'}=\gamma^{2}\left(\nu\frac{\partial^{2}}{\partial x^{2}}+(1+\beta^{2})\frac{\partial^{2}}{\partial x\partial t}+\frac{\beta}{c}\frac{\partial^{2}}{\partial t^{2}}\right) \label{15.15.10} \]

    y

    \[ \frac{\partial^{2}}{\partial t'^{2}}=\gamma^{2}\left(\nu^{2}\frac{\partial^{2}}{\partial x^{2}}+2\nu\frac{\partial^{2}}{\partial x\partial t}+\frac{\partial^{2}}{\partial t^{2}}\right). \label{15.15.11} \]

    Los inversos de todas estas relaciones se encuentran intercambiando las coordenadas cebadas y no cebadas y cambiando los signos de\( \nu\) y\( \beta\).


    This page titled 15.15: Derivados is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.