Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

1.3: Áreas de plano

( \newcommand{\kernel}{\mathrm{null}\,}\)

Áreas planas en las que la ecuación se da enxy coordenadas

alt

Tenemos una curvay=y(x) (Figure I.3) and we wish to find the position of the centroid of the area under the curve between x=a and x=b. We consider an elemental slice of width δx a distanciax from the y axis. Its area is yδx, y así el área total es

A=baydx

El primer momento de área de la rebanada con respecto a lay axis is xyδx, and so the first moment of the entire area is baxydx.

Por lo tanto

¯x=baxydyxbaydyx=baxydyxAlabeleq:1.3.2

Porque¯y notamos que la distancia del centroide de la rebanada desde el xeje es 12y, y por lo tanto el primer momento del área alrededor del x eje es12y.yδx .

Por lo tanto

¯y=bay2dx2A

Ejemplo1.3.1

Considerar una lámina semicircular,x2+y2=a2 , see Figure I.4:

alt

Estamos tratando con las partes tanto por encima como por debajo del\(x \) axis, so the area of the semicircle is 2a0ydx y el primer momento de área es2a0xydx.

Deberías encontrar¯x=4a/(3π)=0.4244a.

Ahora considera la láminax2+y2=a2 , y>0 (Figure I.5):

alt

El área de la porción elemental esta vez esyδx (not 2yδx ), and the integration limits are from a to +a. To find ¯y, use Equation ???, and you should get y=0.4244a .

Plane areas in which the equation is given in polar coordinates.

alt

We consider an elemental triangular sector (Figure I.6) between θ and θ+δθ . The "height" of the triangle is r and the "base" is rδθ. The area of the triangle is 12r2δθ.

Therefore the whole area =

12βαr2dθ

The horizontal distance of the centroid of the elemental sector from the origin (more correctly, from the "pole" of the polar coordinate system) is 23rcosθ . The first moment of area of the sector with respect to the y axis is

23rcosθ×12r2δθ=13r3cosθδθ

so the first moment of area of the entire figure between θ=α and θ=β is

13βαr3cosθdθ

Therefore

¯x=2βαr3cosθdθ3βαr2dθ

Similarly

¯x=2βαr3sinθdθ3βαr2dθ

Example 1.3.2

Consider the semicircle r=a, θ=π2 to +π2

¯x=2a+π/2π/2cosθdθ3+π/2π/2dθ=2a3π+π/2π/2cosθdθ=4a3π

The reader should now try to find the position of the centroid of a circular sector (slice of pizza!) of angle 2α . The integration limits will be α to +α.

When you arrive at a formula (which you should keep in a notebook for future reference), check that it goes to 4α3π if α=π2, and to 2π3 if α=0.


This page titled 1.3: Áreas de plano is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?