Processing math: 100%
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

3.7: Momentum Angular

( \newcommand{\kernel}{\mathrm{null}\,}\)

Notación:

  • LC= momento angular del sistema con respecto al centro de masa C.
  • L= momento angular del sistema relativo a algún otro origen O.
  • ¯r= vector de posición de C con respecto a O.
  • P= impulso lineal del sistema con respecto a O.
  • (El impulso lineal con respecto a C es, por supuesto, cero.)
Teorema:

L=LC+¯r×P

Así:

L=ri×pi=mi(ri×vi)=mi(¯r+ri)×(¯v+vi)=(¯rׯv)mi+¯r×mivi+(miri)ׯv+ri×pi=M(¯rׯv)+¯r×0+0ׯv+LC

por lo tanto

L=LC+¯r×P

Ejemplo3.7.1

Un aro de radio a rodando a lo largo del suelo (Figura III.6):


alt

El momento angular con respecto a C es L C =ICω dondeIC está la inercia rotacional alrededor de C. El momento angular alrededor de O es por lo tanto

I=ICω+M¯va=ICω+Ma2ω=(IC+Ma2)=Iω

donde

I=IC+Ma2

es la inercia rotacional alrededor de O.


This page titled 3.7: Momentum Angular is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?