Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

13.5: Componentes de aceleración

( \newcommand{\kernel}{\mathrm{null}\,}\)

En la Sección 3.4 del “libro” de Mecánica Celestial, derivé los componentes radial y transversal de velocidad y aceleración en coordenadas bidimensionales. Los componentes de velocidad radial y transversal son bastante obvios y apenas necesitan derivación; son justos˙ρ yρ˙ϕ. Para los componentes de aceleración reproduzco aquí un extracto de ese capítulo:

“Los componentes radial y transversal de la aceleración son, por lo tanto(¨ρρ˙ϕ2) and (ρ¨ϕ+2˙ρ˙ϕ) respectively.”

También derivé los componentes radial, meridional y acimutal de velocidad y aceleración en coordenadas esféricas tridimensionales. Nuevamente los componentes de velocidad son bastante obvios; son˙r,r˙θ and rsinθ˙ϕ while for the acceleration components I reproduce here the relevant extract from that chapter.

“Al reunir los coeficientes deˆr,ˆθ,ˆϕ we find that the components of acceleration are:

  • Radiales:¨rr˙θ2rsin2θ˙ϕ2
  • Meridional:r¨θ+2˙r˙θrsinθcosθ˙ϕ2
  • Azimutal:2˙r˙ϕsinθ+2r˙θ˙ϕcosθ+rsinθ¨ϕ. "

Quizás te gustaría mirar hacia atrás a estas derivaciones ahora. Sin embargo, ahora voy a derivarlos por un método diferente, usando la ecuación de movimiento de Lagrange. Puedes decidir por ti mismo cuál prefieres.

alt

Empezaremos en dos dimensiones. LetR and S be the radial and transverse components of a force acting on a particle. (“Radial” means in the direction of increasing ρ; “transverse” means in the direction of increasing ϕ.) If the radial coordinate were to increase by δρ, the work done by the force would be just Rδρ. Thus the generalized force associated with the coordinate ρ is just Pρ=R. If the azimuthal angle were to increase by δϕ, the work done by the force would be Sρδϕ. Thus the generalized force associated with the coordinate ϕ is Pϕ=Sρ. Now we do not have to think about how to start; in Lagrangian mechanics, the first line is always “T= ...”, and I hope you’ll agree that

T=12m(˙ρ2+ρ2˙ϕ2).

If you now apply Equation 13.4.12 in turn to the coordinates ρ and ϕ, you obtain

Pρ=m(¨ρρ˙ϕ2)andPϕ=mρ(ρ¨ϕ+2˙ρ˙ϕ),

and so

R=m(¨ρρ˙ϕ2)andS=m(ρ¨ϕ+2˙ρ˙ϕ).

Therefore the radial and transverse components of the acceleration are (¨ρρ˙ϕ2) and (ρ¨ϕ+2˙ρ˙ϕ) respectively.

We can do exactly the same thing to find the acceleration components in three-dimensional spherical coordinates. Let R, S and F be the radial, meridional and azimuthal (i.e. in direction of increasing r, θ and ϕ) components of a force on a particle.

alt

  • Sir increases by δr, the work on the particle done is Rδr.
  • If θ increases by δθ, the work done on the particle is Srδθ.
  • If ϕ increases by δϕ, the work done on the particle is Frsinθδϕ.

Therefore Pr=R,Pθ=Sr and Pϕ=Frsinθ.

Start:

T=12m(˙r2+r2˙θ2+r2sin2θ˙ϕ2)

If you now apply Equation 13.4.12 in turn to the coordinates r,θ and ϕ, you obtain

Pr=m(¨rr˙θ2r2sin2θ˙ϕ2),

Pθ=m(r2¨θ+2r˙r˙θr2sinθcosθ˙ϕ2)

and

Pϕ=m(r2sin2θ¨ϕ+2r2˙θ˙ϕsinθcosθ+2r˙r˙ϕsin2θ).

Therefore

R=m(¨rr˙θ2rsinθ˙ϕ2),

S=m(r¨θ+2˙r˙θrsinθcosθ˙ϕ2)

and

F=m(rsinθ¨ϕ+2r˙θ˙ϕcosθ+2˙r˙ϕsinθ).

Thus the acceleration components are

  • Radial: ¨rr˙θ2rsin2θ˙ϕ2
  • Meridional: r¨θ2˙r˙θrsinθcosθ˙ϕ2
  • Azimuthal: 2˙r˙ϕsinθ2r˙θ˙ϕcosθ+rsinθ¨ϕ.

Be sure to check the dimensions. Since dot has dimension T-1, and these expressions must have the dimensions of acceleration, there must be an r and two dots in each term.


This page titled 13.5: Componentes de aceleración is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?