13.5: Componentes de aceleración
( \newcommand{\kernel}{\mathrm{null}\,}\)
En la Sección 3.4 del “libro” de Mecánica Celestial, derivé los componentes radial y transversal de velocidad y aceleración en coordenadas bidimensionales. Los componentes de velocidad radial y transversal son bastante obvios y apenas necesitan derivación; son justos˙ρ yρ˙ϕ. Para los componentes de aceleración reproduzco aquí un extracto de ese capítulo:
“Los componentes radial y transversal de la aceleración son, por lo tanto(¨ρ−ρ˙ϕ2) and (ρ¨ϕ+2˙ρ˙ϕ) respectively.”
También derivé los componentes radial, meridional y acimutal de velocidad y aceleración en coordenadas esféricas tridimensionales. Nuevamente los componentes de velocidad son bastante obvios; son˙r,r˙θ and rsinθ˙ϕ while for the acceleration components I reproduce here the relevant extract from that chapter.
“Al reunir los coeficientes deˆr,ˆθ,ˆϕ we find that the components of acceleration are:
- Radiales:¨r−r˙θ2−rsin2θ˙ϕ2
- Meridional:r¨θ+2˙r˙θ−rsinθcosθ˙ϕ2
- Azimutal:2˙r˙ϕsinθ+2r˙θ˙ϕcosθ+rsinθ¨ϕ. "
Quizás te gustaría mirar hacia atrás a estas derivaciones ahora. Sin embargo, ahora voy a derivarlos por un método diferente, usando la ecuación de movimiento de Lagrange. Puedes decidir por ti mismo cuál prefieres.
Empezaremos en dos dimensiones. LetR and S be the radial and transverse components of a force acting on a particle. (“Radial” means in the direction of increasing ρ; “transverse” means in the direction of increasing ϕ.) If the radial coordinate were to increase by δρ, the work done by the force would be just Rδρ. Thus the generalized force associated with the coordinate ρ is just Pρ=R. If the azimuthal angle were to increase by δϕ, the work done by the force would be Sρδϕ. Thus the generalized force associated with the coordinate ϕ is Pϕ=Sρ. Now we do not have to think about how to start; in Lagrangian mechanics, the first line is always “T= ...”, and I hope you’ll agree that
T=12m(˙ρ2+ρ2˙ϕ2).
If you now apply Equation 13.4.12 in turn to the coordinates ρ and ϕ, you obtain
Pρ=m(¨ρ−ρ˙ϕ2)andPϕ=mρ(ρ¨ϕ+2˙ρ˙ϕ),
and so
R=m(¨ρ−ρ˙ϕ2)andS=m(ρ¨ϕ+2˙ρ˙ϕ).
Therefore the radial and transverse components of the acceleration are (¨ρ−ρ˙ϕ2) and (ρ¨ϕ+2˙ρ˙ϕ) respectively.
We can do exactly the same thing to find the acceleration components in three-dimensional spherical coordinates. Let R, S and F be the radial, meridional and azimuthal (i.e. in direction of increasing r, θ and ϕ) components of a force on a particle.
- Sir increases by δr, the work on the particle done is Rδr.
- If θ increases by δθ, the work done on the particle is Srδθ.
- If ϕ increases by δϕ, the work done on the particle is Frsinθδϕ.
Therefore Pr=R,Pθ=Sr and Pϕ=Frsinθ.
Start:
T=12m(˙r2+r2˙θ2+r2sin2θ˙ϕ2)
If you now apply Equation 13.4.12 in turn to the coordinates r,θ and ϕ, you obtain
Pr=m(¨r−r˙θ2−r2sin2θ˙ϕ2),
Pθ=m(r2¨θ+2r˙r˙θ−r2sinθcosθ˙ϕ2)
and
Pϕ=m(r2sin2θ¨ϕ+2r2˙θ˙ϕsinθcosθ+2r˙r˙ϕsin2θ).
Therefore
R=m(¨r−r˙θ2−rsinθ˙ϕ2),
S=m(r¨θ+2˙r˙θ−rsinθcosθ˙ϕ2)
and
F=m(rsinθ¨ϕ+2r˙θ˙ϕcosθ+2˙r˙ϕsinθ).
Thus the acceleration components are
- Radial: ¨r−r˙θ2−rsin2θ˙ϕ2
- Meridional: r¨θ−2˙r˙θ−rsinθcosθ˙ϕ2
- Azimuthal: 2˙r˙ϕsinθ−2r˙θ˙ϕcosθ+rsinθ¨ϕ.
Be sure to check the dimensions. Since dot has dimension T-1, and these expressions must have the dimensions of acceleration, there must be an r and two dots in each term.