10: Matrices de centrifugado Pauli
( \newcommand{\kernel}{\mathrm{null}\,}\)
Podemos representar los estados propios para el momento angular de una partícula spin-1/2 a lo largo de cada uno de los tres ejes espaciales con vectores de columna:
\ [\ begin {aligned}
&|+z\ rangle=\ left [\ begin {array} {l} 1\\ 0\ end {array}\ right]\ quad|+y\ rangle=\ left [\ begin {array} {l} 1/\ sqrt {2}\\ i/\ sqrt {2}
\ end {array}\ right]\ quad|+x\ rangle=\ izquierda [\ begin {array} {l} 1/\ sqrt {2}\\
1/\ sqrt {2}\ end {array}\ derecha]\\ &|-z\ rangle=\ left [\ begin {array} {l} 0\\ 1\ end {array}\ right]\ quad|-y\ rangle=\ left [\ begin {array} {l}
i/\ sqrt {2}\\ 1/\ sqrt {2}
\ end {array}\ right]\ quad|-x\ rangle=\ left [\ begin {array} {r} 1/\ sqrt {2}\\ -1/\ sqrt {2}\ end {array}\ derecha]
\ end {alineado}\ tag {10.1}\ nonumber\]
Del mismo modo, podemos usar matrices para representar los distintos operadores de giro.