Saltar al contenido principal
LibreTexts Español

7.5: Capacidad de calor a baja temperatura

  • Page ID
    128950
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Si

    \[ G(\omega) d \omega=\text { number of normal modes with frequencies from } \omega \text { to } \omega+d \omega\]

    entonces

    \[ E^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) e^{\mathrm{SHO}}(\omega) d \omega \quad \text { and } \quad C_{V}^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega\]

    y así sucesivamente.

    Densidad de modos:

    \[ \begin{aligned} G(\omega) d \omega &=\sum_{\text { branches }}[\text { vol. of shell in } k \text { -space }] \text { (density of modes in } k \text { -space) } \\ &=\sum_{\text { branches }}\left[4 \pi\left(k_{b}(\omega)\right)^{2} d k_{b}\right]\left(\frac{V}{8 \pi^{3}}\right) \end{aligned}\]

    Esta fórmula se mantiene para cualquier relación de dispersión isotrópica k b (ω). Para valores pequeños de ω la relación de dispersión para cada rama es lineal (con la velocidad del sonido c b) así

    \[ k_{b}=\frac{\omega}{c_{b}} \quad \text { and } \quad d k_{b}=\frac{d \omega}{c_{b}},\]

    de donde

    \( G(\omega) d \omega=\sum_{\text { branches }}\left[4 \pi\left(\frac{\omega}{c_{b}}\right)^{2} \frac{d \omega}{c_{b}}\right]\left(\frac{V}{8 \pi^{3}}\right)\)

    \[ =\frac{V}{2 \pi^{2}}\left(\sum_{b=1}^{3} \frac{1}{c_{b}^{3}}\right) \omega^{2} d \omega.\]

    Si definimos la “velocidad media del sonido” c s a través del llamado “promedio cúbico armónico”,

    \[ \frac{1}{c_{s}^{3}} \equiv \frac{1}{3} \sum_{b=1}^{3} \frac{1}{c_{b}^{3}},\]

    entonces tenemos la densidad de modos small- ω

    \[ G(\omega) d \omega=\frac{3 V}{2 \pi^{2}} \frac{\omega^{2}}{c_{s}^{3}} d \omega.\]

    A cualquier temperatura,

    \[ C_{V}^{\text { crystal }}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega.\]

    Recordemos de la ecuación (5.78) que

    \[ c_{V}^{\mathrm{SHO}}(\omega)=k_{B}\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-h \omega / k_{B} T}\right)^{2}},\]

    y usando el resultado small-ω (7.11), tenemos el resultado de baja temperatura

    \[ C_{V}^{\mathrm{crystal}}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B} \int_{0}^{\infty} \omega^{2} d \omega\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-\hbar \omega / k_{B} T}\right)^{2}}.\]

    Para nuestro primer paso, evite la desesperación, en lugar de convertirlo a la variable adimensional

    \[ x=\frac{\hbar \omega}{k_{B} T}\]

    y encuentra

    \[ C_{V}^{\text { crystal }}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B}\left(\frac{k_{B} T}{\hbar}\right)^{3} \int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x\]

    La integral es bastante difícil de hacer, pero no necesitamos hacerlo — la integral es solo un número. Hemos logrado nuestro objetivo, es decir, mostrar que a bajas temperaturas, C VT 3.

    Sin embargo, si quieres perseguir los números correctos, después de algunos violinistas encontrarás que

    \[ \int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x=4 \Gamma(4) \zeta(4)=\frac{4}{15} \pi^{4}.\]

    Por lo tanto, el calor específico a baja temperatura de un sólido debido a una vibración de celosía es

    \[ C_{V}^{\mathrm{crystal}}=k_{B} V \frac{2 \pi^{2}}{5}\left(\frac{k_{B} T}{\hbar c_{s}}\right)^{3}.\]

    7.3 ¿Hasta dónde vibran los átomos?

    Consideremos un modelo clásico simplificado de Einstein en el que los átomos de N, cada uno de masa m, se mueven clásicamente sobre una simple celosía cúbica con separación vecina más cercana de a. Cada átomo está unido a su sitio de celosía por un resorte de constante de resorte K, y todos los valores de K son lo mismo. A temperatura T, ¿cuál es la distancia media cuadrática media de la raíz de cada átomo desde su sitio de equilibrio? (Nota: Estoy pidiendo un promedio de conjunto, no un promedio de tiempo.)


    This page titled 7.5: Capacidad de calor a baja temperatura is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.