Saltar al contenido principal
LibreTexts Español

5.4: ¿Cómo se puede lograr la sobresaturación?

  • Page ID
    88897
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Tres mecanismos básicos para enfriar el aire son RUM: Radiación, Elevación y Mezcla.

    La radiación y la mezcla ocurren a presión constante (isobárica); la elevación ocurre a energía constante (adiabática). Consideremos estos tres casos con más detalle. Una buena manera de mostrar lo que está sucediendo es usar el diagrama de fases del agua. El video (3:15) titulado “Procesos de sobresaturación 2" a continuación explicará estos tres procesos con mayor detalle:

    Procesos de sobresaturación 2

    Haga clic aquí para ver la transcripción del video Procesos de sobresaturación 2.

    No se formarán nubes a menos que el aire se sobresature, lo que significa que su humedad relativa es ligeramente superior al 100%. O dicho de otra manera, su sobresaturación es mayor al 0%. Veamos las tres formas en que se puede lograr la supersaturación, enfriamiento radiativo, mezcla y ascenso adiabático. Podemos usar el diagrama de fases de agua del vapor de agua en el eje y versus la temperatura en el eje x para examinar estos procesos. La supersaturación significa que el ambiente se mueve de la parte completamente vapor del diagrama de fases a la parte totalmente líquida cruzando la línea de equilibrio, que viene dada por la ecuación de Clausius Clapeyron. Mencionaré solo lo esencial para cada proceso, qué cambia y qué permanece igual. Para el enfriamiento radiativo, la presión del vapor de agua permanece igual, pero la temperatura baja. Y debido a que la presión de vapor de saturación depende únicamente de la temperatura, la presión de vapor de saturación también baja. La presión de vapor de saturación disminuye hasta que se iguala y luego un poco menos que la presión de vapor. Y luego la sobresaturación por encima de 0. El siguiente proceso es la mezcla. Las nubes mezcladas generalmente se forman cuando el aire insaturado, cálido y húmedo de una fuente se mezcla con el aire ambiental insaturado, más frío y seco. A medida que el aire cálido y húmedo se mezcla con el aire más frío y seco, la temperatura y presión de vapor de la parcela de aire húmedo se convierte en el promedio de la temperatura y presión de vapor de la parcela de aire húmedo y cálido multiplicado por el número de moles y la temperatura y presión de vapor del aire ambiente frío y seco multiplicado por el número de moles, todo esto dividido por el número total de moles. A medida que la parcela aérea se mezcla con más aire ambiental, la temperatura y presión de vapor de la parcela se mueven a lo largo de la línea de mezcla entre los dos estados iniciales de la parcela aérea Si esta línea cruza la línea de equilibrio y entra en la parte líquida del diagrama de fases, la sobresaturación se vuelve mayor que 0 y se forma la nube. Si el paquete de aire continúa arrastrando el aire seco, continúa a lo largo de la línea de mezcla, y eventualmente puede cruzar la línea de equilibrio de regreso a la región de vapor, hormiga la nube se evaporará. Las estelas son un ejemplo de una nube de mezcla. La longitud de la estela te dice algo sobre cuál debe ser la temperatura y la presión ambiental del aire ambiental. El tercer proceso es el ascenso adiabático. A medida que un paquete aéreo asciende, es caída de presión y temperatura. Debido a que la relación de mezcla de vapor de agua es constante hasta que se forma una nube, la caída en la presión significa una caída en la presión del vapor de agua. Al mismo tiempo, una caída en la temperatura significa una caída en la presión de vapor de saturación, que depende únicamente de la temperatura. Entonces, la presión de vapor y la presión de vapor de saturación están bajando. Sin embargo, en el ascenso adiabático, la presión de vapor de saturación cae más rápido que la presión de vapor, y eventualmente, se igualan. Y entonces la sobresaturación se vuelve mayor que 0, y la nube se forma.

    Enfriamiento Radiativo

    Toda la materia irradia energía como ondas electromagnéticas, como veremos en la siguiente lección. Cuando una masa de aire irradia esta energía (principalmente en la parte infrarroja del espectro), se enfría, pero la cantidad de vapor de agua no cambia.

    Podemos entender este proceso usando el diagrama de fases del agua (ver figura abajo). Inicialmente, la masa de aire está en la posición del punto azul. A medida que la parcela de aire se enfría y la temperatura baja, la temperatura del paquete de aire se mueve hacia la izquierda en el diagrama pero la presión del vapor de agua no cambia. Sin embargo, debido a que la temperatura baja, e s baja. Cuando e s se vuelve ligeramente menor que e, se forma una nube.

    Resumen

    • e es constante a medida que T disminuye.
    • Dado que e s depende solo de T, e s también disminuye hasta e s < e.
    • Cuando e s se vuelve ligeramente menor que e, se forma una nube.
    2019-08-16 7.01.29.png
    Diagrama de fases de agua para enfriamiento radiativo, con una parcela de aire que comienza con e y T marcadas por el punto azul. La flecha horizontal marca el enfriamiento de la parcela aérea y la flecha que apunta hacia abajo marca el cambio en e s y T a medida que la parcela se enfría. Cuando e s se vuelve ligeramente menor que e, se forma una nube. Crédito: W. Brune

    Un ejemplo de enfriamiento radiativo en acción es la niebla de radiación, que ocurre durante la noche cuando la superficie de la Tierra y el aire cercano a ella se enfrían hasta que se forma una niebla (ver figura abajo).

    2019-08-16 7.03.04.png
    Niebla por radiación. El aire húmedo se enfría durante la noche por radiación al espacio, mientras que su relación de mezcla de vapor de agua permanece aproximadamente constante. Sin embargo, la presión de vapor de saturación disminuye a medida que baja la temperatura. Cuando la presión de vapor de saturación cae para ser la misma que la presión de vapor, se forma una niebla de radiación. Crédito: Comisión de Planeación del Condado de Montgomery vía flickr

    Mezcla

    Supongamos que dos parcelas de aire con diferentes temperaturas y presiones parciales de vapor de agua están a la misma presión total. Si estas dos parcelas se mezclan, entonces la temperatura y la presión parcial del vapor de agua van a ser un promedio ponderado de la T y e de las dos parcelas. La ponderación está determinada por la fracción de moles que cada parcela aporta a la parcela mixta. Matemáticamente, para la parcela 1 con e 1, T 1 y N 1 (número de moles) y la parcela 2 con e 2, T 2 y N 2, la e y T de la parcela mixta vienen dadas por las ecuaciones:

    \[e=\frac{N_{1}}{N_{1}+N_{2}} e_{1}+\frac{N_{2}}{N_{1}+N_{2}} e_{2}\]\[T=\frac{N_{1}}{N_{1}+N_{2}} T_{1}+\frac{N_{2}}{N_{1}+N_{2}} T_{2}\]

    o aproximadamente

    \[e=\frac{M_{1}}{M_{1}+M_{2}} e_{1}+\frac{M_{2}}{M_{1}+M_{2}} e_{2}\]\[T=\frac{M_{1}}{M_{1}+M_{2}} T_{1}+\frac{M_{2}}{M_{1}+M_{2}} T_{2}\]

    donde M 1 y M 2 son las masas de las parcelas aéreas. En el diagrama de fases, estos dan líneas rectas para diferentes proporciones de la parcela mixta siendo de la parcela 1 (0% a 100%) y la parcela 2 (100% a 0%), como en la siguiente figura.

    Tenga en cuenta que ambas de estas dos parcelas aéreas están insaturadas. Entonces, ¿cómo se forma una nube? Piense en un solo paquete de aire cálido y húmedo que se mezcle con el ambiente de aire más frío y seco. A medida que el calor se mezcla en más y más aire seco, se diluye cada vez más pero la parcela mixta sigue creciendo. A medida que aumenta la cantidad de aire ambiental en la mezcla, el promedio e y T de la parcela aérea mixta disminuye para estar más cerca de los valores ambientales y la e y T de la parcela mixta siguen una mezcla línea. Comenzando en la parte superior derecha cerca de la parcela más cálida, a medida que la parcela mixta continúa creciendo, eventualmente la e y T golpearán la curva Clausius-Clapeyron. A medida que continúa empujando hacia la porción líquida del diagrama de fases y se supersaturará, se formará una nube de mezcla. La nube permanecerá mientras la mezcla e y T pongan la parcela a la izquierda de la curva Clausius-Clapeyron. Sin embargo, una vez que la parcela mixta llegue a la derecha de la curva, la nube se evaporará.

    2019-08-16 7.06.07.png
    Diagrama de fases de agua para mezcla, con dos parcelas de aire en (T 1, e 1) y (T 2, e 2). Cuando las dos parcelas de aire se mezclan, la temperatura y la presión de vapor de la parcela mixta se encuentran a lo largo de la línea de mezcla entre las dos parcelas. Si una parcela pequeña, cálida y húmeda se mezcla en un ambiente más frío y seco, entonces a medida que la parcela cálida y húmeda se mezcla con más aire ambiental, el tamaño de la parcela de aire mixto crece y la temperatura y la presión de vapor siguen la línea de mezcla hacia la temperatura ambiental y la presión de vapor (Ec. 5.4). Crédito: W. Brune

    Ejemplo:

    Supongamos que la parcela aérea 1 tiene e = 20 hPa, T = 40 o C, y N = 40,000 moles; y la parcela 2 tiene e = 5 hPa, T = 10 o C y N = 80,000 moles. Luego usando la ecuación 5.4 (arriba):

    \[e=\frac{40,0000}{40,000+80,000} 20+\frac{80,000}{40,00+80,000} 5=10 \mathrm{hPa}\]

    \[T=\frac{40,000_{1}}{40,000+80,000} 40+\frac{80,000}{40,00+80,000} 10=20^{\circ} \mathrm{C}\]

    Hay muchos buenos ejemplos de nubes mezcladas. Una es una estela de chorro; un segundo es tu aliento en un día frío; una tercera es una niebla que se forma cuando el aire frío se mueve sobre un suelo cálido y húmedo, digamos justo después de la lluvia.

    2019-08-16 7.08.00.png
    Estelas de diferentes edades. Mira las estelas frescas. Son muy delgadas y consisten en agua de los motores a reacción. Sin embargo, las estelas más viejas se ven más grandes y más extendidas, sin embargo, sabemos que el agua de los motores a reacción no es suficiente para hacer estelas tan grandes. Este vapor de agua extra debe haber venido de la atmósfera. Crédito: Mike Lewinski vía flickr

    Uplift

    La elevación del aire puede conducir a la formación de nubes, como sabemos por el Skew-T. El levantamiento es generalmente lo mismo que el ascenso adiabático. Este ascenso adiabático puede ser impulsado por convección, por una masa de aire menos densa que sobrepasa a una más densa, o por el aire que fluye hacia arriba y sobre una montaña. Sucede lo siguiente:

    • La relación de mezcla de vapor de agua sigue siendo la misma, pero e cae como p gotas, reduciendo así la posibilidad de que RH = e/e s alcance el 100%.
    • La temperatura baja de acuerdo con las relaciones de Poisson para que e s también baje.

    La pregunta es “¿E o e s caen más rápido para que eventualmente e sea igual a e s?” Resulta que e s cae más rápido. Como resultado, en el aire elevado, e y e s convergen en el nivel de condensación de elevación (LCL) y una nube se forma justo en ese nivel (ver figura a continuación).

    2019-08-16 7.08.55.png
    Diagrama de fases de agua para elevación, con una parcela aérea comenzando por el inicio de la flecha. A medida que la parcela asciende tanto e como T (y por lo tanto es) disminuyen, pero es disminuye más rápido que e de manera que eventualmente e > es. Una vez que la nube se forma a medida que la línea pasa a la parte líquida del diagrama de fases, la línea de agua intenta lograr la saturación. Crédito: W. Brune

    La flecha de la figura anterior muestra los cambios en e y T (y por lo tanto e s) a medida que se eleva una parcela aérea. Una vez e s <= e , luego s > 0 y la parcela aérea está sobresaturada. Esta situación sobresaturada no es estable; el vapor de agua en exceso de e s forma líquido. A medida que la elevación continúa, más vapor de agua se convierte en agua líquida y la presión de vapor permanece cercana a e s. Todas las nubes convectivas, es decir, las nubes con extensión vertical, se forman de esta manera. Un ejemplo de elevación adiabática es una nube cúmulo, como se ve en la siguiente figura.

    2019-08-16 7.10.04.png
    Una nube cúmulos sobre el océano. Crédito: JanneG vía pixabay.com

    ¿Por qué se requiere sobresaturación para que se forme una caída en la nube?

    Pensé que las gotas de nube se formaban cuando\(w = w_s\). ¿Por qué se requiere sobresaturación para que se forme una caída en la nube?

    Para responder a esta pregunta, necesitamos mirar a través de un microscopio a la escala nanométrica, que es la escala de moléculas y partículas pequeñas. Todos saben que los núcleos de condensación de nubes son necesarios para que se formen las nubes, pero ¿saben por qué? Vea el siguiente video (3:16) titulado “Glory: The Cloud Makers”.

    Gloria: Los creadores de la nube

    Haga clic aquí para ver la transcripción del video Glory: The Cloud Makers.

    [reproducción de música] NARRADOR: Los aerosoles están suspendidos por toda la atmósfera de la Tierra, y las partículas diminutas y variadas juegan un papel misterioso en el cambio climático inducido por el ser humano. Al igual que las personas, cada partícula de aerosol es única. A veces los aerosoles ocurren de forma natural, de cosas como los volcanes, pero también pueden originarse de la actividad humana. Los aerosoles son de corta duración, ¡pero tienen una vida activa! En poco tiempo, las partículas pueden cambiar su tamaño y composición e incluso viajar a través de vastos océanos. Los aerosoles son difíciles de estudiar, y una nueva área importante de investigación involucra cómo estas partículas impactan las nubes. Sin aerosoles, las nubes no podrían existir. MICHAEL MISHCHENKO: Una partícula de aerosol puede servir como núcleo de condensación de nubes. NARRADOR: La introducción de demasiados aerosoles modificará las propiedades naturales de una nube. MICHAEL MISHCHENKO: Cuantas más partículas de aerosol tengamos en la atmósfera, más gotas de nubes podremos tener. NARRADOR: Las nubes juegan un papel importante en la regulación del clima de la Tierra; las nubes ricas en aerosoles se vuelven más grandes, más brillantes y duraderas. Los aerosoles impactan en las nubes de otras maneras. Algunas partículas de aerosol reflejan principalmente la radiación solar y enfrían la atmósfera, y otras absorben radiación, que calienta el aire. Cuando los aerosoles calientan la atmósfera, crean un ambiente donde las nubes no pueden prosperar. La supresión de las nubes conduce a un mayor calentamiento de la atmósfera por la radiación solar. Los investigadores aún están trabajando para entender el papel de estas curiosas partículas. MICHAEL MISHCHENKO: Necesitamos estudiar la distribución de partículas a nivel global, y la única manera de hacerlo es a partir de satélites. NARRADOR: Nuevas herramientas pronto ayudarán a los científicos a estudiar aerosoles. El sensor de polarimetría en aerosol, o APS, se encuentra entre un conjunto de instrumentos a bordo de la próxima misión Glory de la NASA. El APS proporcionará un conjunto de datos global de distribución de aerosoles con precisión y especificidad sin precedentes. Datos únicos de la misión Glory, junto con la flota de satélites de observación de la Tierra de la NASA, ayudarán a los investigadores a investigar las complejidades del clima cambiante de la Tierra. [reproducción de música] [viento soplando] Crédito: NASA

    En la atmósfera, la humedad relativa rara vez se eleva mucho por encima del 100% debido a que las pequeñas partículas de aerosol actúan como Núcleos de Condensación de Nube Dos efectos determinan con mayor fuerza la cantidad de sobresaturación que debe experimentar cada partícula para acumular suficiente agua para convertirse en una caída de nubes. El primero es un efecto físico de curvatura sobre el aumento de la presión de equilibrio del vapor de agua; el segundo es un efecto químico del aerosol disolviéndose en la creciente caída de agua y reduciendo su presión de equilibrio de vapor. Aprenderás sobre estos dos efectos en las siguientes dos secciones de esta lección.


    This page titled 5.4: ¿Cómo se puede lograr la sobresaturación? is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by William Brune (John A. Dutton: e-Education Institute) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.