Centroides y Momentos de Inercia de Área para Formas 2D
( \newcommand{\kernel}{\mathrm{null}\,}\)
Se muestra la forma con área y ubicación centroide | Momentos de inercia de área rectangular | Momentos de inercia en el área polar |
---|---|---|
Rectángulo Area=bh |
\ begin {align*} i_x &=\ frac {1} {12} b h^3\\ [4pt] i_y &=\ frac {1} {12} b^3 h\ end {alinear*} |
Jz=112bh(b2+h2) |
Triángulo Recto Area=12bh |
\ begin {align*} i_x &=\ frac {1} {36} bh^3\\ [4pt] i_y &=\ frac {1} {36} b^3 h\ end {alinear*} \ begin {align*} I_ {x'} &=\ frac {1} {12} bh^3\\ [4pt] I_ {y'} &=\ frac {1} {12} b^3 h\ end {alinear*} |
|
Triángulo Area=12bh |
Ix=136bh3 Ix′=112bh3 |
|
Círculo Area=πr2 |
\ begin {align*} i_x &=\ frac {\ pi} {4} r^4\\ [4pt] i_y &=\ frac {\ pi} {4} r^4\ end {alinear*} |
Jz=π2r4 |
Anulo Circular Area=π(r2o−r2i) |
\ begin {align*} i_x &=\ frac {\ pi} {4} (r_o^4 - r_i^4)\\ [4pt] i_y &=\ frac {\ pi} {4} (r_o^4 - r_i^4)\ end {align*} |
Jz=π2(r4o−r4i) |
Semicírculo Area=π2r2 |
Ix=(π8−89π)r4 Iy=π8r4 Ix′=π8r4 |
Jz=(π4−89π)r4 |
Cuarto de círculo Area=π4r2 |
\ begin {align*} i_x &=\ left (\ frac {\ pi} {16} -\ frac {4} {9\ pi}\ derecha) r^4\\ [4pt] i_y &=\ left (\ frac {\ pi} {16} -\ frac {4} {9\ pi}\ derecha) r^4\ end {align*} \ begin {align*} I_ {x'} &=\ frac {\ pi} {16} r^4\\ [4pt] I_ {y'} &=\ frac {\ pi} {16} r^4\ end {alinear*} |
Jz=(π8−89π)r4 |
Elipse Area=πab |
\ begin {align*} i_x &=\ frac {\ pi} {4} ab^3\\ [4pt] i_y &=\ frac {\ pi} {4} a^3 b\ end {alinear*} |