Saltar al contenido principal
LibreTexts Español

Respuestas a ejercicios seleccionados

  • Page ID
    110515
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \(2\max(a,b)\) \(2\min(a,b)\) \(4\max(a,b,c)\)

    \(4\min(a,b,c)\)

    \(\infty\)(no);\(-1\) (sí) \(3\) (no);\(-3\) (no) \(\sqrt7\) (sí);\(-\sqrt7\) (sí)\ \(2\) (no);\(-3\) (no) \(1\) (no);\(-1\) (no)

    \(\sqrt7\)(no);\(-\sqrt7\) (no)

    \(2^n/(2n)!\) \(2\cdot3^n/(2n+1)!\) \(2^{-n}(2n)!/(n!)^2\)

    \(n^n/n!\)\

    no

    no

    \(\dst{A_n=\frac{x^n}{n!}\left(\ln x-\sum_{j=1}^n\frac{1} {j}\right)}\)

    \(f_n(x_1,x_2, \dots,x_n)=2^{n-1}\max(x_1,x_2, \dots,x_n)\),\(g_n(x_1,x_2, \dots,x_n)=2^{n-1}\min(x_1,x_2, \dots,x_n)\)

    \([\frac{1}{2},1)\);;\((-\infty,\frac{1}{2})\cup[1,\infty)\);\((-\infty,0]\cup(\frac{3}{2},\infty)\);\((0,\frac{3}{2}]\);;\((-\infty,0]\cup(\frac{3}{2},\infty)\);\((-\infty,\frac{1}{2}]\cup[1,\infty)\) \((-3,-2) \cup (2,3)\);;\((-\infty,-3]\cup[-2,2]\cup[3,\infty)\);\(\emptyset\);\((-\infty,\infty)\);;\(\emptyset\);\((-\infty,-3]\cup[-2,2]\cup[3,\infty)\)

    \(\emptyset\);\((-\infty,\infty)\);;\(\emptyset\);\((-\infty,\infty)\);\(\emptyset\);\((-\infty,\infty)\)

    \(\emptyset\);\((-\infty,\infty)\);;\([-1,1]\);\((-\infty,-1)\cup(1,\infty)\);\([-1,1]\);\((-\infty,\infty)\)

    \((0,3]\) \([0,2]\) \((-\infty,1)\cup(2,\infty)\)

    \((-\infty,0]\cup(3,\infty)\)

    \(\frac{1}{4}\) \(\frac{1}{6}\) \(6\)

    \(1\)

    ni;\((-1,2)\, \cup\, (3,\infty)\);\((-\infty,-1)\,\cup\,(2,3)\);\((-\infty,-1]\,\cup\,(2,3)\);\((-\infty,-1]\,\cup\,[2,3]\) abierto;\(S\);\((1,2)\);\([1,2]\) cerrado;\((-3,-2)\,\cup\,(7,8)\);\((-\infty,-3)\,\cup\,(-2,7)\,\cup(8,\infty)\);\((-\infty-3]\,\cup[-2,7]\,\cup[8,\infty)\)

    cerrado;\(\emptyset\);\(\bigcup\set{(n,n+1)}{n=\mbox{integer}}\);\((-\infty,\infty)\)

    \(\set{x}{x=1/n,\ n=1,2, \dots}\); \(\emptyset\) , \(S_1=\) racionales,\(S_2=\) irracionales cualquier conjunto cuyo supremo sea un punto aislado del conjunto , los racionales

    \(S_1=\)racionales,\(S_2=\) irracionales

    \(D_f=[-2,1)\cup[3,\infty)\),\(D_g=(-\infty,-3]\cup[3,7)\cup(7,\infty)\),\(D_{f\pm g}=D_{fg}=[3,7)\cup(7,\infty)\),\(D_{f/g}=(3,4)\cup(4,7)\cup(7,\infty)\)

    , \(\set{x}{x\ne(2k+1)\pi/2\mbox{ where }k=\mbox{integer}}\) \(\set{x}{x\ne0,1}\) \(\set{x}{x\ne0}\)

    \([1,\infty)\)

    \(4\) \(12\) \(-1\) \(2\)

    \(-2\)

    \(\frac{11}{17}\) \(-\frac{2}{3}\) \(\frac{1}{3}\)

    \(2\)

    \(0,2\) \(0\), ninguno \(-\frac{1}{3},\frac{1}{3}\)

    ninguno,\(0\)

    \(0\) \(0\) ninguno \(0\) ninguno

    \(0\)

    \(0\) \(0\) ninguno ninguno ninguno

    \(0\)

    \(\infty\) \(-\infty\) \(\infty\) \(\infty\) \(\infty\)

    \(-\infty\)

    ninguno \(\infty\) \(\infty\)

    ninguno

    \(\infty\) \(\infty\) \(\infty\) \(-\infty\) ninguno

    \(\infty\)

    \(\frac{3}{2}\) \(\frac{3}{2}\) \(\infty\) \(-\infty\) \(\infty\)

    \(\frac{1}{2}\)

    \(\lim_{x\to\infty}r(x)=\infty\)si\(n>m\) y\(a_n/b_m>0\);\(=-\infty\) si\(n>m\) y\(a_n/b_m<0\);\(=a_n/b_m\) si\(n=m\);\(=0\) si\(n<m\). \(\lim_{x\to-\infty}r(x)=(-1)^{n-m}\lim_{x\to\infty}r(x)\)

    \(\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)\)

    \(\limsup_{x\to x_0-}(f-g)(x)\le\limsup_{x\to x_0-}f(x)-\liminf_{x\to x_0-}g(x)\);\(\liminf_{x\to x_0-}(f-g)(x)\ge\liminf_{x\to x_0-}f(x)-\limsup_{x\to x_0-}g(x)\)

    desde el derecho continuo ninguno continuo ninguno continuo

    desde la izquierda

    \([0,1)\),\((0,1)\),\([1,2)\),\((1,2)\),,\((1,2]\),\([1,2]\)\([0,1)\),\((0,1)\),\((1,\infty)\)

    \(\tanh x\)es continuo para todos\(x\),\(\coth x\) para todos\(x\ne0\)

    No \([-1,1]\),\([0,\infty)\) \(\bigcup_{n=-\infty}^\infty (2n\pi,(2n+1)\pi)\),\((0,\infty)\) \(\bigcup_{n=-\infty}^\infty(n\pi,(n+1)\pi)\),\((-\infty,-1)\cup(-1,1)\cup(1,\infty)\)

    \(\bigcup_{n=-\infty}^\infty[n\pi,(n+\frac{1}{2})\pi]\),\([0,\infty)\)

    \((-1,1)\) \((-\infty,\infty)\) \(x_0\ne(2k+\frac{3}{2}\pi),\ k=\)entero \(x\ne\frac{1}{2}\) \(x\ne1\) \(x\ne(k+\frac{1}{2}\pi),\ k=\) entero entero \(x\ne(k+\frac{1}{2}\pi),\ k=\) entero \(x\ne0\)

    \(x\ne0\)

    \(p(c)=q(c)\)y\(p'_{-}(c)=q'_{+}(c)\)

    \(f^{(k)}(x)=n(n-1)\cdots(n-k-1)x^{n-k-1}|x|\)si\(1\le k\le n-1\);\(f^{(n)}(x)=n!\) si\(x>0\);\(f^{(n)}(x)=-n!\) si\(x<0\);\(f^{(k)}(x)=0\) si\(k>n\) y\(x\ne0\);\(f^{(k)}(0)\) no existe si\(k\ge n\).

    \(c'=ac-bs\),\(s'=bc+as\)

    \(c(x)=e^{ax}\cos bx\),\(s(x)=e^{ax}\sin bx\)

    \(f(x)=-1\)si\(x\le0\),\(f(x)=1\) si\(x>0\); entonces\(f'(0+)=0\), pero\(f_+'(0)\) no existe.

    continua desde la derecha

    No existe tal función (Teoremo~2.3.9).

    Contraejemplo: Dejar\(x_0=0\),\(f(x)=|x|^{3/2}\sin(1/x)\) si\(x\ne0\), y\(f(0)~=0~\).

    Contraejemplo: Vamos\(x_0=0\),\(f(x)=x/|x|\) si\(x\ne0\),\(f(0)=0\).

    \(-\infty\)si\(\alpha\le0\),\(0\) si\(\alpha>0\)

    \(\infty\)si\(\alpha>0\),\(-\infty\) si\(\alpha\le0\)

    \(-\infty\)\(-\infty\)si\(\alpha\le0\),\(0\) si\(\alpha>0\)

    \(0\)

    Supongamos que\(g'\) es continuo en\(x_0\) y\(f(x)=g(x)\) si\(x\le x_0\),\(f(x)=1+g(x)\) si\(x>x_0\).

    \(1\) \(e\)

    \(1\)\(e^L\)

    \(f^{(n+1)}(x_0)/(n+1)!\).

    Contraejemplo: Vamos\(x_0=0\) y\(f(x)=x|x|\).

    Vamos\(g(x)=1+|x-x_0|\), entonces\(f(x)=(x-x_0)(1+|x-x_0|)\).

    Vamos\(g(x)=1+|x-x_0|\), entonces\(f(x)=(x-x_0)^2(1+|x-x_0|)\).

    \(1\),\(2\),\(2\),\(0\) \(0\),\(-\pi\),\(3\pi/2\),\(-4\pi+\pi^3/2\)\ \(-\pi^2/4\),\(-2\pi\),\(-6+\pi^2/4\),\(4\pi\)

    \(-2\),\(5\),\(-16\),\(65\)

    \(0\),\(-1\),\(0\),\(5\)

    \(0\),\(1\),\(0\),\(5\) \(-1\),\(0\),\(6\),\(-24\) \(\sqrt2\),\(3\sqrt2\),,\(11\sqrt2\),\(57\sqrt2\) \(-1\),\(3\),\(-14\),\(88\) min ni min max min ni min

    min

    \(f(x)=e^{-1/x^2}\)if\(x\ne0\),\(f(0)=0\) (Ejercicio~)

    Ninguno si\(b^2-4c<0\); min local a\(x_1=(-b+\sqrt{b^2-4c})/2\) y máximo local en\(x_1=(-b-\sqrt{b^2-4c})/2\) si\(b^2-4c>0\); si\(b^2=4c\) entonces\(x=-b/2\) es un punto crítico, pero no un punto extremo local.

    \(\dst\frac{1}{6}\left(\frac{\pi}{20}\right)^3\) \(\dst\frac{1}{8^3}\) \(\dst\frac{\pi^2}{512\sqrt2}\)

    \(\dst\frac{1}{4(63)^4}\)

    \(M_3h/3\), donde\(M_3=\sup_{|x-c|\le h}|f^{(3)}(c)|\)\

    \(M_4h^2/12\)donde\(M_4=\sup_{|x-c|\le h}|f^{(4)}(c)|\)

    \(k=-h/2\)

    funciones monótona

    Dejar\([a,b]=[0,1]\) y\(P=\{0,1\}\). Dejar\(f(0)=f(1)=\frac{1}{2}\) y\(f(x)=x\) si\(0<x<1\). Entonces\(s(P)=0\) y\(S(P)=1\), pero tampoco es una suma de Riemann de\(f\) más\(P\).

    \(\frac{1}{2}\),\(-\frac{1}{2}\)

    \(\frac{1}{2}\),\(1\)\(e^b-e^a\)\(1-\cos b\)\(\sin b\)

    \(f(a)[g_1-g(a)]+f(d)(g_2-g_1)+f(b)[g(b)-g_2]\)

    \(f(a)[g_1-g(a)]+f(b)[g(b)-g_p]+\sum_{m=1}^{p-1}f(a_m)(g_{m+1}-g_m)\)

    Si\(g\equiv1\) y\(f\) es arbitrario, entonces\(\int_a^b f(x)\,dg(x)=0\).

    \(\overline{u}=c=\frac{2}{3}\) \(\overline{u}=c=0\)

    \(\overline{u}=(e-2)/(e-1),\ c=\sqrt{\overline{u}}\)

    \(n!\) \(\frac{1}{2}\) divergente \(1\) \(-1\)

    \(0\)

    divergente convergente convergente convergente convergente

    divergente

    \(p<2\) \(p<1\) \(p>-1\) \(-1<p<2\) ninguno ninguno

    \(p<1\)

    \(p-q<1\) \(p,q<1\) \(-1<p<2q-1\) \(q>-1\),\(p+q>1\) \(p+q>1\)

    \(q+1<p<3q+1\)

    \(\deg g-\deg f\ge 2\)

    \(2\) \(1\) \(0\) \(1/2 \quad\) \(1/2 \quad\) \(1/2 \quad\)

    \(1/2 \quad\)

    \(\sqrt A\) \(1\) \(1\) \(1\) \(-\infty\)

    \(0\)

    Si\(s_n=1\) y\(t_n=-1/n\), entonces\((\lim_{n\to\infty}s_n)/(\lim_{n\to\infty}t_n)=1/0=\infty\), pero\(\lim_{n\to\infty}s_n/t_n=-\infty\).

    \(\infty\),\(0\) \(\infty\),\(-\infty\) si\(|r|>1\);\(2\),\(-2\) si\(r=-1\);\(0\),\(0\) si\(r=1\);\(1\),\(-1\) si;\(|r|<1\) \(\infty\),\(-\infty\) si\(r<-1\);\(0\),\(0\) si\(|r|<1\); \(\frac{1}{2}\),\(\frac{1}{2}\) si\(r=1\);\(\infty\),\(\infty\) si\(r>1\)\ \(\infty\),\(\infty\)

    \(|t|\),\(-|t|\)

    \(1\),\(-1\) \(2\),\(-2\) \(3\),\(-1\)

    \(\sqrt{3}/2\),\(-\sqrt{3}/2\)

    Si\(\{s_n\}=\{1,0,1,0, \dots\}\), entonces\(\lim_{n\to\infty}t_n=\frac{1}{2}\)

    \(\lim_{m\to\infty}s_{2m}=\infty\),\(\lim_{m\to\infty}s_{2m+1}=-\infty\)\ \(\lim_{m\to\infty}s_{4m}=1\),\(\lim_{m\to\infty}s_{4m+2}=-1\),\(\lim_{m\to\infty}s_{2m+1}=0\)\ \(\lim_{m\to\infty}s_{2m}=0\),\(\lim_{m\to\infty}s_{4m+1}=1\),\(\lim_{m\to\infty}s_{4m+3}=-1\)\ \(\lim_{n\to\infty}s_{n}=0\) \(\lim_{m\to\infty}s_{2m}=\infty\),\(\lim_{m\to\infty}s_{2m+1}=0\)\

    \(\lim_{m\to\infty}s_{8m}=\lim_{m\to\infty}s_{8m+2}=1\),\(\lim_{m\to\infty}s_{8m+1}=\sqrt2\),\\(\lim_{m\to\infty}s_{8m+3}=\lim_{m\to\infty}s_{8m+7}=0\),\(\lim_{m\to\infty}s_{8m+5}=-\sqrt2\),\\(\lim_{m\to\infty}s_{8m+4}=\lim_{m\to\infty}s_{8m+6}=-1\)

    \(\{1,2,1,2,3,1,2,3,4,1,2,3,4,5, \dots\}\)

    Dejar\(\{t_n\}\) ser cualquier secuencia convergente y\(\{s_n\}=\{t_1,1,t_2,2, \dots,t_n,n, \dots\}\).

    No; considere\(\sum 1/n\)

    convergente convergente divergente divergente\ convergente convergente divergente

    convergente

    \(p>1\) \(p>1\)

    \(p>1\)

    convergente convergente si\(0<r<1\), divergente si\(r\ge1\)\ divergente convergente divergente

    convergente

    convergente convergente convergente

    convergente

    convergente divergente si y solo si\(0<r<1\) o\(r=1\) y\(p<-1\) convergente convergente

    convergente

    convergente convergente divergente

    convergente si\(\alpha<\beta-1\), divergente si\(\alpha\ge\beta-1\)

    convergente convergente divergente

    convergente

    \(\sum(-1)^n\) \(\sum(-1)^n/n\),\(\sum\dst\left[\frac{(-1)^n}{ n}+\frac{1}{ n\log n}\right]\)\ \(\sum(-1)^n2^n\)

    \(\sum(-1)^n\)

    condicionalmente convergente condicionalmente convergente absolutamente convergente

    absolutamente convergente

    %\ begin {exercisepatch1}

    Dejar\(k\) y\(s\) ser los grados del numerador y denominador, respectivamente. Si\(|r|=1\), la serie converge absolutamente si y solo si\(s\ge k+2\). La serie converge condicionalmente si\(s=k+1\) y\(r=-1\), y diverge en todos los demás casos, donde\(s\ge k+1\) y\(|r|=1\).

    \(\sum(-1)^n/\sqrt n\) \(0\)

    \(2A-a_0\)

    \(F(x)=0,\ |x|\le1\) \(F(x)=0,\ |x|\le1\)\ \(F(x)=0,\ -1<x\le1\) \(F(x)=\sin x,\ -\infty<x<\infty\)\ \(F(x)=1,\ -1<x\le1\);\(F(x)=0,\ |x|>1\) \(F(x)=x,\ -\infty<x<\infty\)\ \(F(x)=x^2/2,\ -\infty<x<\infty\) \(F(x)=0,\ -\infty<x<\infty\)\

    \(F(x)=1,\ -\infty<x<\infty\)

    \(F(x)=0\) \(F(x)=1,\ |x|<1\);\(F(x)=0,\ |x|>1\)\

    \(F(x)=\sin x/x\)

    \(F_n(x)=x^n\);\(S_k=[-k/(k+1),k/(k+1)]\)

    \([-1,1]\) \([-r,r]\cup\{1\}\cup\{-1\},\ 0<r<1\) \([-r,r]\cup\{1\},\ 0<r<1\) \([-r,r],\ r>0\) \((-\infty,-1/r]\cup[-r,r]\cup[1/r,\infty)\cup\{1\},\ 0<r<1\)\ \([-r,r],\ r>0\) \([-r,r],\ r>0\) \((-\infty,-r]\cup[r,\infty)\cup\{0\},\ r>0\)\

    \([-r,r],\ r>0\)

    Vamos\(S=(0,1]\),\(F_n(x)=\sin(x/n)\),\(G_n(x)=1/x^2\); entonces\(F=0\),\(G=1/x^2\), y la convergencia es uniforme, pero\(\|F_nG_n\|_S=\infty\).

    \(3\) \(1\) \(\frac{1}{2}\)

    \(e-1\)

    subconjuntos compactos de subconjuntos\((-\frac{1}{2},\infty)\) \([-\frac{1}{2},\infty)\) cerrados de\(\dst\left(\frac{1-\sqrt5}{2},\frac{1+\sqrt5}{2}\right)\) \((-\infty,\infty)\) \([r,\infty),\ r>1\)

    subconjuntos compactos de\((-\infty,0)\cup(0,\infty)\)

    Dejar\(S=(-\infty,\infty)\),\(f_n=a_n\) (constante), donde\(\sum a_n\) converge condicionalmente, y\(g_n=|a_n|\).

    ``absolutamente”

    significa que\(\sum|f_n(x)|\) converge puntualmente y\(\sum f_n(x)\) converge uniformemente en\(S\), mientras

    significa que\(\sum|f_n(x)|\) converge uniformemente en\(S\).

    \(\dst{\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{ n!(2n+1)}}\)

    \(\dst{\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)(2n+1)!}}\)

    \(1/3e\) \(1\) \(\frac{1}{3}\) \(1\)

    \(\infty\)

    \(1\) \(\frac{1}{2}\) \(\frac{1}{4}\) \(4\) \(1/e\)

    \(1\)

    \(x(1+x)/(1-x)^3\)\(e^{-x^2}\)\\(\dst{\sum_{n=1}^\infty\frac{(-1)^{n-1}}{ n^2} }(x-1)^n;\ R=1\)

    \ (\ mbox {Tan} ^ {-1} x=\ dst {\ sum_ {n=0} ^\ infty (-1) ^n\ frac {x^ {2n+1}} {(2n+1)}};\ f^ {(2n)} (0) =0;\ f^ {(2n+1)} (0) =( -1) ^2 (2n)! \);

    \(\dst{\frac{\pi}{6}=\mbox{Tan}^{-1}\frac{1}{\sqrt3}=\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)3^{n+1/2}}}\)

    \(\cosh x=\dst{\sum_{n=0}^\infty\frac{x^{2n}}{(2n)!}}\),\(\sinh x=\dst{\sum_{n=0}^\infty\frac{x^{2n+1}}{(2n+1)!}}\)

    \((1-x)\sum_{n=0}^\infty x^n=1\)converge para todos\(x\)

    \(\dst{x+x^2+\frac{x^3}{3}-\frac{3x^5}{40}+\cdots}\) \(\dst{1-x-\frac{x^2}{2}+\frac{5x^3}{6}+\cdots}\) \(\dst{1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{721x^6}{720}+\cdots}\)

    \(\dst{x^2-\frac{x^3}{2}+\frac{x^4}{6}- \frac{x^5}{6}+\cdots}\)

    \(\dst{1+x+\frac{2x^2}{3}+\frac{x^3}{3}+\cdots}\) \(\dst{1-x-\frac{x^2}{2}+\frac{3x^3}{2}+\cdots}\) \(\dst{1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+\cdots}\) \(\dst{1+\frac{x^2}{6}+\frac{7x^4}{360}+\frac{31x^6}{15120} +\cdots}\)

    \(\dst{2-x^2+\frac{x^4}{12}-\frac{x^6}{360}+\cdots}\)

    \(\dst{F(x)=\frac{5}{(1-3x)(1+2x)}=\frac{3}{1-3x}+\frac{2}{1+2x}= \sum_{n=0}^\infty[3^{n+1}-(-2)^{n+1}]x^n}\)\(1\)

    \((3,0,3,3)\) \((-1,-1,4)\)

    \((\frac{1}{6},\frac{11}{12},\frac{23}{24},\frac{5}{36})\)

    \(\sqrt{15}\) \(\sqrt{65}/12\) \(\sqrt{31}\)

    \(\sqrt3\)

    \(\sqrt{89}\) \(\sqrt{166}/12\) \(3\)

    \(\sqrt{31}\)

    \(12\) \(\frac{1}{32}\)

    \(27\)

    \(\mathbf{X}=\mathbf{X}_0+t\mathbf{U}\ (-\infty<t<\infty)\)en todos los casos.

    \(\dots\mathbf{U}\)y\(\mathbf{X}_1-\mathbf{X}_0\) son múltiplos escalares de\(\mathbf{V}\).

    \(\mathbf{X}=(1,-3,4,2)+t(1,3,-5,3)\)

    \(\mathbf{X}=(3,1,-2,1,4,)+t(-1,-1,1,3,-7)\)

    \(\mathbf{X}=(1,2,-1)+t(-1,-3,0)\)

    \(5\) \(2\)

    \(1/2\sqrt5\)

    \(\set{(x_1,x_2,x_3,x_4)}{|x_i|\le3\ (i=1,2,3) \mbox{ with at least one equality}}\) \ (\ set {(x_1, x_2, x_3, x_4)} {|x_i|\ le3\ (i=1,2,3)}\)

    \(S\)

    \(\set{(x_1,x_2,x_3,x_4)}{|x_i|>3 \mbox{ for at least one of }i=1,2,3}\)

    \(S\) \(S\) \(\emptyset\)

    \(\set{(x,y,z)}{z\ne1\mbox{ or }x^2+y^2>1}\)

    abrir ni

    cerrado

    \((\pi,1,0)\)

    \((1,0,e)\)

    \(6\) \(6\) \(2\sqrt5\) \(2L\sqrt n\)

    \(\infty\)

    \(\set{(x,y)}{x^2+y^2=1}\)

    \(\dots\)si para\(A\) hay un entero\(R\) tal que\(|\mathbf{X}_r|>A\) si\(r\ge R\).

    \(10\) \(3\) \(1\) \(0\) \(0\)

    \(0\)

    \(a/(1+a^2)\)

    \(\infty\) \(\infty\) no \(-\infty\)

    no

    \(0\) \(0\) ninguno \(0\)

    ninguno

    si no\(D_f\) es acotado y para cada uno\(M\) hay\(R\) tal que\(f(\mathbf{X})>M\) si\(\mathbf{X}\in D_f\) y\(|\mathbf{X}|>R\). Reemplazar $>M$” por\(<M\)” en

    .

    \(\lim_{\mathbf{X}\to\mathbf{0}}f(\mathbf{X})=0\)si\(a_1+a_2+\cdots+a_n>b\); sin límite si\(a_1+a_2+\cdots+a_n\le b\) y\(a_1^2+a_2^2+\cdots+a_n^2\ne0\);\(\lim_{\mathbf{X}\to\mathbf{0}}f(\mathbf{X})=\infty\) si\(a_1=a_2=\cdots=a_n=0\) y\(b>0\).

    No; por ejemplo,\(\lim_{x\to\infty}g(x,\sqrt x)=0\).

    \(\mathbb R^3\) \(\mathbb R^2\) \(\mathbb R^3\) \(\mathbb R^2\) \(\set{(x,y)}{x\ge y}\)

    \(\mathbb R^n\)

    \(\mathbb R^3-\{(0,0,0)\}\) \(\mathbb R^2\) \(\mathbb R^2\) \(\mathbb R^2\)

    \(\mathbb R^2\)

    \(f(x,y)=xy/(x^2+y^2)\)si\((x,y)\ne(0,0)\) y\(f(0,0)=0\)

    \(\dst{\frac{2}{\sqrt3}(x+y\cos x-xy\sin x)-2\sqrt\frac{2}{3}(x\cos x)}\) \(\dst{\frac{1-2y}{\sqrt3}e^{-x+y^2+2z}}\) \(\dst{\frac{2}{\sqrt n}(x_1+x_2+\cdots+x_n)}\)

    \(1/(1+x+y+z)\)

    \(\phi_1^2\phi_2\) \(-5\pi/\sqrt6\) \(-2e\) \(0\)

    \(0\)

    \(f_x=f_y=1/(x+y+2z)\),\(f_z=2/(x+y+2z)\)

    \(f_x=2x+3yz+2y\),\(f_y=3xz+2x\),\(f_z=3xy\) \(f_x=e^{yz}\),\(f_y=xze^{yz}\),\(f_z=xye^{yz}\)

    \(f_x=2xy\cos x^2y\),\(f_y=x^2\cos x^2y\),\(f_z=1\)

    \(f_{xx}=f_{yy}=f_{xy}=f_{yx}=-1/(x+y+2z)^2\),\(f_{xz}=f_{zx}=f_{yz}=f_{zy}=\)\(-2/(x+y+2z)^2\),\(f_{zz}=-4/(x+y+2z)^2\)

    \(f_{xx}=2\),\(f_{yy}=f_{zz}=0\),\(f_{xy}=f_{yx}=3z+2\),\(f_{xz}=f_{zx}=3y\),\(f_{yz}=f_{zy}=3x\)

    \(f_{xx}=0\),\(f_{yy}=xz^2e^{yz}\),\(f_{zz}=xy^2e^{yz}\),\(f_{xy}=f_{yx}=ze^{yz}\),\(f_{xz}=f_{zx}=ye^{yz}\),\(f_{yz}=f_{zy}=xe^{yz}\)

    \(f_{xx}=2y\cos x^2y-4x^2y^2\sin x^2y\),\(f_{yy}=-x^4\sin x^2y\),\(f_{zz}=0\),\(f_{xy}=f_{yx}=2x\cos x^2y-2x^3y\sin x^2y\),\(f_{xz}=f_{zx}=f_{yz}=f_{zy}=0\)

    \(f_{xx}(0,0)=f_{yy}(0,0)=0\),\(f_{xy}(0,0)=-1\),\(f_{yx}(0,0)=1\)\

    \(f_{xx}(0,0)=f_{yy}(0,0)=0\),\(f_{xy}(0,0)=-1\),\(f_{yx}(0,0)=1\)

    \(f(x,y)=g(x,y)+h(y)\), donde\(g_{xy}\) existe en todas partes y no\(h\) es en ninguna parte diferenciable.

    \(df=(3x^2+4y^2+2y\sin x+2xy\cos x)\,dx+(8xy+2x\sin x)\, dy\),\\(d_{\mathbf{X}_0}f=16\,dx\),\((d_{\mathbf{X}_0}f)(\mathbf{X}-\mathbf{X}_0)=16x\)\ \(df=-e^{-x-y-z}\,(dx+dy+dz)\),\(d_{\mathbf{X}_0}f=-dx-dy-dz\),\((d_{\mathbf{X}_0}f)(\mathbf{X}- \mathbf{X}_0)=-x-y-z\)\ \(df=(1+x_1+2x_2+\cdots+nx_n)^{-1}\sum_{j=1}^nj\,dx_j\),,\(d_{\mathbf{X}_0}f=\sum_{j=1}^n j\,dx_j\),\\((d_{\mathbf{X}_0}f)(\mathbf{X}-\mathbf{X}_0)=\sum_{j=1}^n jx_j\),\

    \(df=2r|\mathbf{X}|^{2r-2}\sum_{j=1}^nx_j\,dx_j\),\(d_{\mathbf{X}_0}f=2rn^{r-1}\sum_{j=1}^n dx_j\),\\((d_{\mathbf{X}_0}f)(\mathbf{X}- \mathbf{X}_0)=2rn^{r-1}\sum_{j=1}^n (x_j-1)\),

    El vector unitario en la dirección de\((f_{x_1}(\mathbf{X}_0), f_{x_2}(\mathbf{X}_0), \dots,f_{x_n}(\mathbf{X}_0))\) siempre que esto no sea\(\mathbf{0}\); si lo es\(\mathbf{0}\), entonces\(\partial f(\mathbf{X}_0)/\partial\boldsymbol{\Phi}=0\) para cada\(\boldsymbol{\Phi}\).

    \(z=2x+4y-6\) \(z=2x+3y+1\) \(z=(\pi x)/2+y-\pi/2\)

    \(z=x+10y+4\)

    \(5\,du+34\,dv\) \(0\) \(6\,du-18\,dv\)

    \(8\,du\)

    \(h_r=f_x\cos\theta+f_y\sin\theta\),\(h_\theta=r(-f_x\sin\theta+f_y\cos\theta)\),\(h_z=f_z\)

    \(h_r=f_x\sin\phi\cos\theta+f_y\sin\phi\sin\theta+f_z\cos\phi\),\(h_\theta=r\sin\phi(-f_x\sin\theta+f_y\cos\theta)\),\(h_\phi=r(f_x\cos\phi\cos\theta+f_y\cos\phi\sin\theta-f_z\sin\phi)\)

    \(h_y=g_xx_y+g_y+g_ww_y\),\(h_z=g_xx_z+g_z+g_ww_z\)

    \(h_{rr}=f_{xx}\sin^2\phi\cos^2\theta+f_{yy}\sin^2\phi\sin^2\theta+ f_{zz}\cos^2\phi+f_{xy}\sin^2\phi\sin2\theta+f_{yz}\sin2\phi\sin\theta+ f_{xz}\sin2\phi\cos\theta\),

    \(\dst h_{r\theta} =(-f_x\sin\theta+f_y\cos\theta)\sin\phi+\frac{r}{2}(f_{yy}- f_{xx})\sin^2\phi\sin2\theta +rf_{xy}\sin^2\phi\cos2\theta+\frac{r}{2} (f_{zy}\cos\theta-f_{zx}\sin\theta)\sin2\phi\)

    \(\dst{1+x+\frac{x^2}{2}-\frac{y^2}{2}+\frac{x^3}{6}-\frac{xy^2}{2}}\)

    \(\dst{1-x-y+\frac{x^2}{2}+xy+\frac{y^2}{2}-\frac{x^3}{6}-\frac{x^2y}{2} -\frac{xy^2}{2}-\frac{y^3}{6}}\)\ \(0\)

    \(xyz\)

    \((d_{(0,0)}^2p)(x,y)=(d_{(0,0)}^2q)(x,y)=2(x-y)^2\)

    \(\left[\begin{array}{rrr}3&4&6\\2&-4&2\\7&2&3\end{array}\right]\)

    \(\left[\begin{array}{rr}2&4\\3&-2\\7&-4\\6&1\end{array}\right]\)

    \(\left[\begin{array}{rrrr}8&8&16&24\\0&0&4&12\\ 12&16&28&44\end{array}\right]\)

    \(\left[\begin{array}{rrr}-2&-6&0\\0&-2&-4\\-2&2&-6\end{array}\right]\)

    \(\left[\begin{array}{rrr}-2&2&6\\6&7&-3\\0&-2&6\end{array}\right]\)

    \(\left[\begin{array}{rr}-1&7\\3&5\\5&14\end{array}\right]\)

    \(\left[\begin{array}{rr}13&25\\16&31\\16&25\end{array}\right]\)

    \(\left[\begin{array}{r}29\\50\end{array}\right]\)

    \(\mathbf{A}\)y\(\mathbf{B}\) son cuadrados del mismo orden.

    \(\left[\begin{array}{rrr}7&3&3\\4&7&7\\6&-9&1\end{array}\right]\)

    \(\left[\begin{array}{rr}14&10\\6&-2\\14&2\end{array}\right]\)

    \(\left[\begin{array}{rrr}-7&6&4\\-9&7&13\\5&0&-14\end{array}\right]\),\(\left[\begin{array}{rrr}-5&6&0\\4&-12&3\\4&0&3\end{array}\right]\)

    \(\left[\begin{array}{rrr}6xyz&3xz^2&3x^2y\end{array}\right]\);
    \(\left[\begin{array}{rrr}-6&3&-3\end{array}\right]\)

    \(\cos(x+y)\left[\begin{array}{rr}1&1\end{array}\right]\);\(\left[\begin{array}{rr}0&0\end{array}\right]\)

    \(\left[\begin{array}{rrr}(1-xz)ye^{-xz}&xe^{-xz}&-x^2ye^{-xz} \end{array}\right]\);\(\left[\begin{array}{rrr}2&1&-2\end{array}\right]\)\

    \(\sec^2(x+2y+z)\left[\begin{array}{rrr}1&2&1\end{array}\right]\);\(\left[\begin{array}{rrr}2&4&2\end{array}\right]\)

    \(|\mathbf{X}|^{-1}\left[\begin{array}{rrrr}x_1&x_2&\cdots&x_n\end{array}\right]\);\(\dst\frac{1}{\sqrt n}\left[\begin{array}{rrrr}1&1&\cdots&1\end{array}\right]\)

    \((2,3,-2)\) \((2,3,0)\) \((-2,0,-1)\)

    \((3,1,3,2)\)

    \(\dst\frac{1}{10}\left[\begin{array}{rr}4&2\\-3&1\end{array}\right]\)

    \(\dst\frac{1}{2}\left[\begin{array}{rrr}-1&1&2\\3&1&-4\\-1&-1&2 \end{array}\right]\)

    \(\dst\frac{1}{25}\left[\begin{array}{rrr}4&3&-5\\6&-8&5\\-3&4&10 \end{array}\right]\)

    \(\dst\frac{1}{2}\left[\begin{array}{rrr}1&-1&1\\-1&1&1\\1&1&-1 \end{array}\right]\)

    \(\dst\frac{1}{7}\left[\begin{array}{rrrr}3&-2&0&0\\2&1&0&0\\0&0&2&-3 \\0&0&1&2\end{array}\right]\)

    \(\dst\frac{1}{10}\left[\begin{array}{rrrr}-1&-2&0&5 \\-14&-18&10&20\\21&22&-10&-25\\17&24&-10&-25\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})=\left[\begin{array}{ccc} 2x&1&2\\-\sin(x+y+z)&-\sin(x+y+z)&-\sin(x+y+z)\\[2\jot] yze^{xyz}&xze^{xyz}&xye^{xyz}\end{array}\right]\);\ [2]\(J\mathbf{F}(\mathbf{X})=e^{xyz}\sin(x+y+z) [x(1-2x)(y-z)-z(x-y)]\);\ [2]\(\mathbf{G}(\mathbf{X})=\left[\begin{array}{r}0\\1\\1\end{array}\right] +\left[\begin{array}{rrr}2&1&2\\0&0&0\\0&0&-1\end{array}\right] \left[\begin{array}{c}x-1\\y+1\\z\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})=\left[\begin{array}{rr}e^x\cos y&-e^x\sin y\\e^x\sin y&e^x\cos y\end{array}\right]\);\(J\mathbf{F}(\mathbf{X})=e^{2x}\);\ [2]\(\mathbf{G}(\mathbf{X})=\left[\begin{array}{r}0\\1\end{array}\right] +\left[\begin{array}{rr}0&-1\\1&0\end{array}\right] \left[\begin{array}{c}x\\y-\pi/2\end{array}\right]\)\ [2]

    \(\mathbf{F}'(\mathbf{X})= \left[\begin{array}{rrr}2x&-2y&0\\0&2y&-2z\\-2x&0&2z\end{array}\right]\);\(J\mathbf{F}=0\);\ [2]\(\mathbf{G}(\mathbf{X})= \left[\begin{array}{rrr}2&-2&0\\0&2&-2\\-2&0&2\end{array}\right] \left[\begin{array}{c}x-1\\y-1\\z-1\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})= \left[\begin{array}{ccc} (x+y+z+1)e^x&e^x&e^x\\(2x-x^2-y^2)e^{-x} &2ye^{-x}&0\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})=\left[\begin{array}{c}g_1'(x)\\g_2'(x)\\\vdots\\ g_n'(x)\end{array}\right]\)\

    \(\mathbf{F}'(r,\theta)= \left[\begin{array}{ccc}e^x\sin yz&ze^x\cos yz&ye^x\cos yz\\ze^y\cos xz&e^y\sin xz&xe^y\cos xz\\ye^z\cos xy&xe^z\cos xy&e^z\sin xy\end{array}\right]\)

    \(\mathbf{F}'(r,\theta)=\left[\begin{array}{rr}\cos\theta&-r\sin\theta \\\sin\theta&r\cos\theta\end{array}\right]\);\(J\mathbf{F}(r,\theta)=r\)\ [2]

    \(\mathbf{F}'(r,\theta,\phi)=\left[\begin{array}{ccc}\cos\theta\cos\phi& -r\sin\theta\cos\phi&-r\cos\theta\sin\phi\\\sin\theta\cos\phi& \phantom{-}r\cos\theta\cos\phi&-r\sin\theta\sin\phi\\\sin\phi&0&r\cos\phi \end{array}\right]\);\\(J\mathbf{F}(r,\theta,\phi)=r^2\cos\phi\)\ [2]

    \(\mathbf{F}'(r,\theta,z)=\left[\begin{array}{ccc}\cos\theta&-r\sin\theta&0 \\\sin\theta&\phantom{-}r\cos\theta&0\\0&0&1\end{array}\right]\);\(J\mathbf{F}(r,\theta,z)=r\)

    \(\left[\begin{array}{rrr}0&0&4\\0&-\frac{1}{2}&0\end{array}\right]\) \(\left[\begin{array}{rr}-18&0\\2&0\end{array}\right]\)

    \(\left[\begin{array}{rr}9&-3\\3&-8\\1&0\end{array}\right]\)

    \(\left[\begin{array}{rrr}4&-3&1\\0&1&1\end{array}\right]\) \(\left[\begin{array}{rr}2&0\\2&0\end{array}\right]\)

    \(\left[\begin{array}{rr}5&10\\9&18\\-4&-8\end{array}\right]\)

    \([1,\pi/2]\) \([1,2\pi]\) \([1,\pi]\) \([2\sqrt2,9\pi/4]\)

    \([\sqrt2,3\pi/4]\)

    \([1,-3\pi/2]\) \([1,-2\pi]\) \([1,-\pi]\) \([2\sqrt2,-7\pi/4]\)

    \([\sqrt2,-5\pi/4]\)

    Dejar\(f(x)=x\ (0\le x\le\frac{1}{2})\),\ (f (x) =x-\ frac {1} {2}\ (\ frac {1} {2} <x\ le1)\); entonces\(f\) es localmente invertible pero no invertible on\([0,1]\).

    \(\mathbf{F}(S)=\set{(u,v)}{-\pi+2\phi<\arg(u,v)<\pi+2\phi}\), donde\(\phi\) es un argumento de\((a,b)\);

    \ (\ mathbf {F} _S^ {-1} (u, v) = (u^2+v^2) ^ {1/4}\ left [\ begin {array} {r}\ cos (\ arg (u, v) /2)\\ [2\ jot]\ sin (\ arg (u, v) /2)\ end {array}\ derecha],\ 2\ phi-\ pi<\ arg (u, v) <2\ phi+\ pi\)

    \(\left[\begin{array}{c}x\\y\end{array}\right]= \dst\frac{1}{10}\left[\begin{array}{c}\phantom{3}u-2v\\3u+4v\end{array}\right]\);\((\mathbf{F}^{-1})'=\dst\frac{1}{10} \left[\begin{array}{rr}1&-2\\3&4\end{array}\right]\)

    \(\left[\begin{array}{c}x\\y\\z\end{array}\right]= \dst\frac{1}{2}\left[\begin{array}{c}u+2v+3w\\u-w\\u+v+2w\end{array}\right]\);\((\mathbf{F}^{-1})'=\dst\frac{1}{2} \left[\begin{array}{rrr}1&2&3\\1&0&-1\\1&1&2\end{array}\right]\)

    \(\mathbf{G}_1(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}\sqrt{u+v}\\ \sqrt{u-v}\end{array}\right]\),\(\mathbf{G}_1'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} 1/\sqrt{u+v}&1/\sqrt{u+v}\\ 1/\sqrt{u-v}&-1/\sqrt{u-v}\\ \end{array}\right]\)

    \(\mathbf{G}_2(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}-\sqrt{u+v}\\ \sqrt{u-v}\end{array}\right]\),\(\mathbf{G}_2'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} -1/\sqrt{u+v}&-1/\sqrt{u+v}\\ 1/\sqrt{u-v}&-1/\sqrt{u-v}\\ \end{array}\right]\)

    \(\mathbf{G}_3(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}\sqrt{u+v}\\ -\sqrt{u-v}\end{array}\right]\),\(\mathbf{G}_3'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} 1/\sqrt{u+v}&1/\sqrt{u+v}\\ -1/\sqrt{u-v}&1/\sqrt{u-v}\\ \end{array}\right]\)

    \(\mathbf{G}_4(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}-\sqrt{u+v}\\ -\sqrt{u-v}\end{array}\right]\),\(\mathbf{G}_4'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} -1/\sqrt{u+v}&-1/\sqrt{u+v}\\ -1/\sqrt{u-v}&1/\sqrt{u-v}\\ \end{array}\right]\)

    De resolver\(x=r\cos\theta\),\(y=r\sin\theta\) para\(\theta=\arg(x,y)\). Cada ecuación es satisfecha por ángulos que no son argumentos de\((x,y)\), ya que ninguna de las fórmulas identifica el cuadrante de\((x,y)\) manera única. Además,

    no se sostiene si\(x=0\).

    \(\left[\begin{array}{c}x\\y\end{array}\right]= \mathbf{G}(u,v)=(u^2+v^2)^{1/4} \left[\begin{array}{r}\cos[\frac{1}{2}\arg(u,v)] \\[2\jot] \sin(\arg(u,v)/2)\end{array}\right]\),

    donde\(\beta-\pi/2<\arg(u,v)<\beta+\pi/2\) y\(\beta\) es un argumento de\((a,b)\);

    \(\mathbf{G}'(u,v)=\dst\frac{1}{2(x^2+y^2)} \left[\begin{array}{rr}x&y\\-y&x\end{array}\right]\)

    Si\(\mathbf{F}(x_1,x_2, \dots,x_n)=(x_1^3,x_2^3, \dots,x_n^3)\), entonces\(\mathbf{F}\) es invertible, pero\\(J\mathbf{F}(\mathbf{0})~=0\).

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{r}1\\-1\end{array}\right] -\dst\frac{1}{25}\left[\begin{array}{rr}5&5\\3&8\end{array}\right] \left[\begin{array}{c}u+5\\v-4\end{array}\right]\)

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{r}1\\1\end{array}\right] +\dst\frac{1}{6}\left[\begin{array}{rr}4&-2\\-3&3\end{array}\right] \left[\begin{array}{c}u-2\\v-3\end{array}\right]\)

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{r}0\\1\\1\end{array}\right]+ \left[\begin{array}{rrr}0&-1&1\\-1&1&0\\1&0&0\end{array}\right] \left[\begin{array}{c}u-1\\v-1\\w-2\end{array}\right]\)

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{c}1\\\pi/2\\\pi\end{array}\right]+ \left[\begin{array}{rrr}0&-1&0\\1&0&0\\0&0&-1\end{array}\right] \left[\begin{array}{c}u\\v+1\\w\end{array}\right]\)

    \(\mathbf{G}'(x,y,z)= \left[\begin{array}{ccc} \cos\theta\cos\phi&\sin\theta\cos\phi&\sin\phi\\[2\jot] -\dst\frac{\sin\theta}{ r\cos\phi}&\dst\frac{\cos\theta}{ r\cos\phi}&0\\[2\jot] -\dst\frac{1}{ r}\cos\theta\sin\phi&-\dst\frac{1}{ r}\sin\theta\sin\phi&\dst\frac{1}{ r}\cos\phi\end{array}\right]\)

    \(\mathbf{G}'(x,y,z)= \left[\begin{array}{ccc}\cos\theta&\sin\theta&0\\[2\jot] -\dst\frac{1}{ r}\sin\theta&\dst\frac{1}{ r}\cos\theta&0\\[2\jot] 0&0&1\end{array}\right]\)

    \(\left[\begin{array}{c}u\\v\end{array}\right]= \dst\frac{1}{2}\left[\begin{array}{rr}-3&4\\1&-2\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right]\)

    \(\left[\begin{array}{c}u\\v\\w\end{array}\right]=\dst -\frac{1}{2} \left[\begin{array}{rr} 3&3\\-1&2\\2&3 \end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right]\)

    \(\left[\begin{array}{c}u\\v\end{array}\right]= \dst\frac{1}{5}\left[\begin{array}{rr}2&-1\\-1&3\end{array}\right] \left[\begin{array}{c}-y+\sin x\\-x+\sin y\end{array}\right]\)

    \(u=-x\),\(v=-y\),\(z=-w\)

    \(f_i(\mathbf{X},\mathbf{U})=\dst\left(\sum_{j=1}^n a_{ij}(x_j-x_{j0})\right)^r-(u_i-u_{i0})^s\),\(1\le i\le m\), donde\(r\) y\(s\) son enteros positivos y no todos\(a_{ij}=0\). \(r=s=3\); \(r=1\),\(s=3\);

    \(r=s=2\)

    \(u_x(1,1)=-\frac{5}{8}\),\(u_y(1,1)=-\frac{1}{2}\)

    \(u_x(1,1,1)=\frac{5}{8}\),\(u_y(1,1,1)=-\frac{9}{8}\),\(u_z(1,1,1)=\frac{1}{2}\)

    \(u(1,2)=0\),\(u_x(1,2)=u_y(1,2)=-4\)

    \(u(-1,-2)=2\),\(u_x(-1,-2)=1\),\(u_y(-1,-2)=-\frac{1}{2}\)

    \(u(\pi/2,\pi/2)=u_x(\pi/2,\pi/2)=u_y(\pi/2,\pi/2)=0\)

    \(u(1,1)=1\),\(u_x(1,1)=u_y(1,1)=-1\)

    \(u_1(1,1)=1\),\(\dst\frac{\partial u_1(1,1)}{\partial x}=5\),\(\dst\frac{\partial u_1(1,1)}{\partial y}=2\)

    \(u_2(1,1)=2\),\(\dst\frac{\partial u_2(1,1)}{\partial x}=-14\);\(\dst\frac{\partial u_2(1,1)}{\partial y}=-2\)

    \(u_k(0,\pi)=(2k+1)\pi/2\),\(\dst\frac{\partial u_k(0,\pi)}{\partial x}=0\),\(\dst\frac{\partial u_k(0,\pi)}{\partial y}=-1\),\(k=\) entero

    \(\dst\frac{1}{5}\left[\begin{array}{rrr}-1&-2&1\\-1&-2&1\end{array}\right]\)\(u'(0)=3\),\(v'(0)=-1\)

    \(\dst\frac{1}{6}\left[\begin{array}{rr}5&5\\-5&-5\\6&6\end{array}\right]\)

    \(\mathbf{U}_1(1,1)=\left[\begin{array}{r}3\\1\end{array}\right]\),\(\mathbf{U}_1'(1,1)=\left[\begin{array}{rr}1&3\\-1&2\end{array}\right]\);

    \(\mathbf{U}_2(1,1)=-\left[\begin{array}{r}3\\1\end{array}\right]\),\(\mathbf{U}_2'(1,1)=-\left[\begin{array}{rr}1&3\\-1&2\end{array}\right]\)

    \(u_x(0,0,0)=2\),\(v_x(0,0,0)= w_x(0,0,0)=-2\)

    \(y_x=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(x,z,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\),\(y_v=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(v,z,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\),\(z_x=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,x,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\),

    \(z_v= -\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,v,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\),\(u_x=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,z,x)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\),\(u_v=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,z,v)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\)

    \(x=-2y-u\),\(z=-2v\);\(x=-2y-u\),\(v=-\dst\frac{z}{2}\);\(y=-\dst\frac{x}{2}-\dst\frac{u}{2}\),\(z=-2v\);\(y=-\dst\frac{x}{2}-\dst\frac{u}{2}\),\(v=-\dst\frac{z}{2}\);\(z=-2v\)\(u=-x-2y\),\(u=-x-2y\);\(v=-\dst\frac{z}{2}\)

    \(y_x(1,-1,-2)=-\frac{1}{2}\),\(v_u(1,-1,-2)=1\)

    \(u_w(0,-1)=\frac{5}{6}\),\(u_y(0,-1)=0\),\(v_w(0,-1)=-\frac{5}{6}\),\(v_y(0,-1)=0\),\\(x_w(0,-1)=1\),\(x_y(0,-1)=-1\)

    \(u_x(1,1)=0\),\(u_y(1,1)=0\),\(v_x(1,1)=-1\),\(v_y(1,1)=-1\),\(u_{xx}(1,1)=2\),\\(u_{xy}(1,1)=1\),\(u_{yy}(1,1)=2\),\(v_{xx}(1,1)=-2\),\(v_{xy}(1,1)=-1\),\(v_{yy}(1,1)=-2\)

    \(u_x(1,-1)=0\),\(u_y(1,-1)=\dst\frac{1}{2}\),\(v_x(1,-1)=-\dst\frac{1}{2}\),\(v_y(1,-1)=0\),\\(u_{xx}(1,-1)=-\dst\frac{1}{8}\),\(u_{xy}(1,-1)=\dst\frac{1}{8}\),\(u_{yy}(1,-1)=\dst\frac{1}{8}\),\(v_{xx}(1,-1)=-\dst\frac{1}{8}\),\\(v_{xy}(1,-1)=-\dst\frac{1}{8}\),\(v_{yy}(1,-1)=\dst\frac{1}{8}\)

    \(28\)

    \(\frac{1}{4}\)\(3(b-a)(d-c)\),\(0\)\(\set{(m,n)}{m,n=\mbox{integers}}\)

    \(12\) \(\frac{79}{20}\) \(-1\)

    \((1-\log2)/2\)

    \(\frac{7}{4}\) \(17\) \(\frac{2}{3}(\sqrt2-1)\)

    \(1/4\pi\)

    \(\frac{3}{8}\),\(\frac{5}{8}\) \(\frac{3}{8}\),\(\frac{5}{8}\) \(\frac{3}{4}\),\(\frac{5}{4}\) \(\frac{3}{4}\left(z+\frac{1}{2}\right)\),\(\frac{5}{4}\left(z+\frac{1}{2}\right)\)

    \(z+\frac{1}{2}\),\(1\)

    \(-285\) \(0\) \(0\)

    \(\frac{1}{4}(e-\frac{5}{2})\)

    \(324\) \(\frac{1}{6}\)

    \(1\)\(\frac{52}{15}\)

    \(36\) \(1\) \(\frac{64}{3}\)

    \((e^6+17)/2\)

    \(\frac{2}{27}\) \(\frac{1}{2}(e-\frac{5}{2})\) \(\frac{1}{24}\)

    \(\frac{1}{36}\)

    \(16\pi\) \(\frac{1}{6}\) \(\frac{128}{21}\)

    \(\frac{\pi}{2}\)

    \(\frac{1}{2}(b_1-a_1)\cdots(b_n-a_n)\sum_{j=1}^n(a_j+b_j)\)

    \(\frac{1}{3}(b_1-a_1)\cdots(b_n-a_n)\sum_{j=1}^n(a_j^2+a_jb_j+b_j^2)\)

    \(2^{-n}(b_1^2-a_1^2)\cdots(b_n^2-a_n^2)\)

    \(\int_{-\sqrt3/2}^{\sqrt3/2}dx\int_{1/2}^{\sqrt{1-x^2}}f(x,y)\,dy\)\(\frac{1}{2}\)

    Dejar\(S_1\) y\(S_2\) ser densos subconjuntos de\(\mathbb R\) tal manera que\(S_1\cup S_2=\mathbb R\).

    \(-1\);\(c\) (constante);\(1\)\((u_2-u_1)(v_2-v_1)/|ad-bc|\)

    \(\frac{5}{6}\) \(\frac{4}{9}\)

    \(\log\frac{5}{2}\)\(3\)\(\frac{1}{2}\)\(\frac{5}{4}e(e-1)\)

    \(\frac{4}{3}\pi abc\)\(2\pi(e^{25}-e^9)\)\(16\pi/3\)\(21/64\)

    \((\pi/8)\log5\) \((\pi/4)(e^4-1)\)

    \(2\pi/15\)

    \(\pi^2a^4/2\)

    \((\beta_1-\alpha_1)\cdots(\beta_n-\alpha_n)/|\det(\mathbf{A})|\)\(|a_1a_2\cdots a_n|V_n\)

    \ end {documento}

    {}

    Supongamos\(f\in C[a,b]\). Acordando a la, si\(\epsilon>0\), hay un polinomio\(p\) tal que\(|f(x)-p(x)|<\epsilon\),\(a\le x\le b\). Ahora supongamos que\ [ a\ le x_ {1n} < x_ {2n} <\ cdots<x_ {nn}\ le b,\ quad a\ le y_ {1n} < y_ {2n} <\ cdots<y_ {nn}\ le b,\ quad n\ ge 1. \] y\ [ \ lim_ {n\ a\ infty}\ frac {1} {n}\ suma_ {i=1} ^ {n} |x_ {in} -y_ {in} |=0. \] Mostrar que si\(f\in C[a,b]\), entonces\ [ \ lim_ {n\ a\ infty}\ frac {1} {n}\ sum_ {i=1} ^ {n} |f (x_ {in}) -f (y_ {in}) |=0. \]

    Por la desigualdad del triángulo,\ [ |f (x_ {in}) -f (y_ {in}) |\ le |f (x_ {in}) -p (x_ {in}) | +|p (x_ {in}) -p (y_ {in}) |+|p (y_ {in}) -f (y_ {in}) |, \] entonces\ [\ begin {ecuación}\ tag {A} |f (x_ {in}) -f (y_ {in}) |<|p (x_ {in}) -p (y_ {in}) |+2\ épsilon. \ end {ecuación}\] Vamos\(M=\max_{a\le x\le b}|p'(x)|\). Por el teorema del valor medio,\ [ |p (x_ {in}) -p (y_ {in}) |\ le M |x_ {in} -y_ {in} |. \] Esto y (A) implican que\ [ \ frac {1} {n}\ sum_ {i=1} ^n|f (x_ {in}) -f (y_ {in}) |< 2\ epsilon+\ frac {M} {n}\ sum_ {i=1} ^n|x_ {in} -y_ {in} |. \] De esto y (A),\ [ \ limsup_ {n\ a\ infty} \ frac {1} {n}\ sum_ {i=1} ^n|f (x_ {in}) -f (y_ {in}) |\ le 2\ épsilon. \] Dado que\(\epsilon\) es arbitrario, esto implica la conclusión.

    {} En el ajuste de Ejercicio~1, vamos\ [ y_ {in} =a+\ frac {i} {n}\ sum_ {i=1} ^ {n} (b-a),\ quad 1\ le i\ le n,\ quad n\ ge 1. \] Mostrar que\ [ \ lim_ {n\ a\ infty}\ frac {1} {n}\ sum_ {i=1} ^ {n} f (x_ {in}) =\ frac {1} {b-a}\ int_ {a} ^ {b} f (x)\, dx. \]

    {Solución 2.} Ya que\(f\in C[a,b]\),\(\int_{a}^{b}f(x)\,dx\) existe (Teoremo~3.2.8, p.~133).

    Por lo tanto, de Definición~3.1.1 (p. 114),\ [ \ lim_ {n\ a\ infty}\ sum_ {i=1} ^ {n} f (y_ {in}) =\ frac {1} {b-a}\ int_ {a} ^ {b} f (x)\, dx. \] Desde\ [ \ frac {1} {n}\ izquierda| \ suma_ {i=1} ^ {n} f (x_ {in}) -\ frac {1} {b-a}\ int_ {a} ^ {b} f (x)\, dx\ derecha| \ le\ frac {1} {n}\ sum_ {i=1} ^ {n} |f (_ {in}) -f (y_ {in}) |+ \ izquierda|\ frac {1} {n} \ sum_ {i=1} ^ {n} f (y_ {in}) -\ frac {1} {b-a}\ int_ {a} ^ {b} f (x)\, dx\ derecha|, \] El ejercicio 1 implica la conclusión.

    Supongamos que\(g\) es continuo y no decreciente en\([c,d]\). Para

    \ end {documento}


    This page titled Respuestas a ejercicios seleccionados is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.