Saltar al contenido principal
LibreTexts Español

4.9: Examen de Aptitud

  • Page ID
    116705
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ejercicio\(\PageIndex{1}\)

    Sombra una porción que corresponda a la fracción\(\dfrac{5}{8}\)

    Un rectángulo dividido en ocho partes.

    Contestar

    Un rectángulo dividido en ocho partes. Cinco partes están sombreadas.

    Ejercicio\(\PageIndex{2}\)

    Especificar el numerador y denominador de la fracción\(\dfrac{5}{9}\).

    Contestar

    Numerador, 5; denominador, 9

    Ejercicio\(\PageIndex{3}\)

    Escribe la fracción cinco once.

    Contestar

    \(\dfrac{5}{11}\)

    Ejercicio\(\PageIndex{4}\)

    Escribe, en palabras,\(\dfrac{4}{5}\)

    Contestar

    Cuatro quintas partes

    Ejercicio\(\PageIndex{5}\)

    ¿Cuál de las fracciones es una fracción propiamente dicha? \(4 \dfrac{1}{12}\),\(\dfrac{5}{12}\),\(\dfrac{12}{5}\)

    Contestar

    \(\dfrac{5}{12}\)

    Ejercicio\(\PageIndex{6}\)

    Convertir\(3 \dfrac{4}{7}\) a una fracción impropia.

    Contestar

    \(\dfrac{25}{7}\)

    Ejercicio\(\PageIndex{7}\)

    Convertir\(\dfrac{16}{5}\) a un número mixto.

    Contestar

    \(3 \dfrac{1}{5}\)

    Ejercicio\(\PageIndex{8}\)

    Determinar si\(\dfrac{5}{12}\) y\(\dfrac{20}{48}\) son fracciones equivalentes.

    Contestar

    si

    Para problemas 9-11, reducir, si es posible, cada fracción a los términos más bajos.

    Ejercicio\(\PageIndex{9}\)

    \(\dfrac{21}{35}\)

    Contestar

    \(\dfrac{3}{5}\)

    Ejercicio\(\PageIndex{10}\)

    \(\dfrac{15}{51}\)

    Contestar

    \(\dfrac{5}{17}\)

    Ejercicio\(\PageIndex{11}\)

    \(\dfrac{104}{480}\)

    Contestar

    \(\dfrac{13}{60}\)

    Para los problemas 12 y 13, determine el numerador o denominador faltante.

    Ejercicio\(\PageIndex{12}\)

    \(\dfrac{5}{9} = \dfrac{?}{36}\)

    Contestar

    20

    Ejercicio\(\PageIndex{13}\)

    \(\dfrac{4}{3} = \dfrac{32}{?}\)

    Contestar

    24

    Para problemas 14-25, encuentra cada valor.

    Ejercicio\(\PageIndex{14}\)

    \(\dfrac{15}{16} \cdot \dfrac{4}{25}\)

    Contestar

    \(\dfrac{3}{20}\)

    Ejercicio\(\PageIndex{15}\)

    \(3 \dfrac{3}{4} \cdot 2 \dfrac{2}{9} \cdot 6 \dfrac{3}{5}\)

    Contestar

    55

    Ejercicio\(\PageIndex{16}\)

    \(\sqrt{\dfrac{25}{36}}\)

    Contestar

    \(\dfrac{5}{6}\)

    Ejercicio\(\PageIndex{17}\)

    \(\sqrt{\dfrac{4}{9}} \cdot \sqrt{\dfrac{81}{64}}\)

    Contestar

    \(\dfrac{3}{4}\)

    Ejercicio\(\PageIndex{18}\)

    \(\dfrac{11}{30} \cdot \sqrt{\dfrac{225}{121}}\)

    Contestar

    \(\dfrac{1}{2}\)

    Ejercicio\(\PageIndex{19}\)

    \(\dfrac{4}{15} \div 8\)

    Contestar

    \(\dfrac{1}{30}\)

    Ejercicio\(\PageIndex{20}\)

    \(\dfrac{8}{15} \cdot \dfrac{5}{12} \div 2 \dfrac{4}{9}\)

    Contestar

    \(\dfrac{1}{11}\)

    Ejercicio\(\PageIndex{21}\)

    \((\dfrac{6}{5})^3 \div \sqrt{1 \dfrac{11}{15}}\)

    Contestar

    \(\dfrac{36}{25} = 1 \dfrac{11}{25}\)

    Ejercicio\(\PageIndex{22}\)

    Hallar\(\dfrac{5}{12}\) de\(\dfrac{24}{25}\).

    Contestar

    \(\dfrac{2}{5}\)

    Ejercicio\(\PageIndex{23}\)

    \(\dfrac{2}{9}\)¿de qué número es\(\dfrac{1}{18}\)?

    Contestar

    \(\dfrac{1}{4}\)

    Ejercicio\(\PageIndex{24}\)

    \(1\dfrac{5}{7}\)de\(\dfrac{21}{20}\) es ¿qué número?

    Contestar

    \(\dfrac{9}{5} = 1 \dfrac{4}{5}\)

    Ejercicio\(\PageIndex{25}\)

    ¿Qué parte de\(\dfrac{9}{14}\) es\(\dfrac{6}{7}\)?

    Contestar

    \(\dfrac{4}{3}\)o\(1 \dfrac{1}{3}\)


    4.9: Examen de Aptitud is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.