4.9: Examen de Aptitud
- Page ID
- 116705
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Ejercicio\(\PageIndex{1}\)
Sombra una porción que corresponda a la fracción\(\dfrac{5}{8}\)
- Contestar
Ejercicio\(\PageIndex{2}\)
Especificar el numerador y denominador de la fracción\(\dfrac{5}{9}\).
- Contestar
-
Numerador, 5; denominador, 9
Ejercicio\(\PageIndex{3}\)
Escribe la fracción cinco once.
- Contestar
-
\(\dfrac{5}{11}\)
Ejercicio\(\PageIndex{4}\)
Escribe, en palabras,\(\dfrac{4}{5}\)
- Contestar
-
Cuatro quintas partes
Ejercicio\(\PageIndex{5}\)
¿Cuál de las fracciones es una fracción propiamente dicha? \(4 \dfrac{1}{12}\),\(\dfrac{5}{12}\),\(\dfrac{12}{5}\)
- Contestar
-
\(\dfrac{5}{12}\)
Ejercicio\(\PageIndex{6}\)
Convertir\(3 \dfrac{4}{7}\) a una fracción impropia.
- Contestar
-
\(\dfrac{25}{7}\)
Ejercicio\(\PageIndex{7}\)
Convertir\(\dfrac{16}{5}\) a un número mixto.
- Contestar
-
\(3 \dfrac{1}{5}\)
Ejercicio\(\PageIndex{8}\)
Determinar si\(\dfrac{5}{12}\) y\(\dfrac{20}{48}\) son fracciones equivalentes.
- Contestar
-
si
Para problemas 9-11, reducir, si es posible, cada fracción a los términos más bajos.
Ejercicio\(\PageIndex{9}\)
\(\dfrac{21}{35}\)
- Contestar
-
\(\dfrac{3}{5}\)
Ejercicio\(\PageIndex{10}\)
\(\dfrac{15}{51}\)
- Contestar
-
\(\dfrac{5}{17}\)
Ejercicio\(\PageIndex{11}\)
\(\dfrac{104}{480}\)
- Contestar
-
\(\dfrac{13}{60}\)
Para los problemas 12 y 13, determine el numerador o denominador faltante.
Ejercicio\(\PageIndex{12}\)
\(\dfrac{5}{9} = \dfrac{?}{36}\)
- Contestar
-
20
Ejercicio\(\PageIndex{13}\)
\(\dfrac{4}{3} = \dfrac{32}{?}\)
- Contestar
-
24
Para problemas 14-25, encuentra cada valor.
Ejercicio\(\PageIndex{14}\)
\(\dfrac{15}{16} \cdot \dfrac{4}{25}\)
- Contestar
-
\(\dfrac{3}{20}\)
Ejercicio\(\PageIndex{15}\)
\(3 \dfrac{3}{4} \cdot 2 \dfrac{2}{9} \cdot 6 \dfrac{3}{5}\)
- Contestar
-
55
Ejercicio\(\PageIndex{16}\)
\(\sqrt{\dfrac{25}{36}}\)
- Contestar
-
\(\dfrac{5}{6}\)
Ejercicio\(\PageIndex{17}\)
\(\sqrt{\dfrac{4}{9}} \cdot \sqrt{\dfrac{81}{64}}\)
- Contestar
-
\(\dfrac{3}{4}\)
Ejercicio\(\PageIndex{18}\)
\(\dfrac{11}{30} \cdot \sqrt{\dfrac{225}{121}}\)
- Contestar
-
\(\dfrac{1}{2}\)
Ejercicio\(\PageIndex{19}\)
\(\dfrac{4}{15} \div 8\)
- Contestar
-
\(\dfrac{1}{30}\)
Ejercicio\(\PageIndex{20}\)
\(\dfrac{8}{15} \cdot \dfrac{5}{12} \div 2 \dfrac{4}{9}\)
- Contestar
-
\(\dfrac{1}{11}\)
Ejercicio\(\PageIndex{21}\)
\((\dfrac{6}{5})^3 \div \sqrt{1 \dfrac{11}{15}}\)
- Contestar
-
\(\dfrac{36}{25} = 1 \dfrac{11}{25}\)
Ejercicio\(\PageIndex{22}\)
Hallar\(\dfrac{5}{12}\) de\(\dfrac{24}{25}\).
- Contestar
-
\(\dfrac{2}{5}\)
Ejercicio\(\PageIndex{23}\)
\(\dfrac{2}{9}\)¿de qué número es\(\dfrac{1}{18}\)?
- Contestar
-
\(\dfrac{1}{4}\)
Ejercicio\(\PageIndex{24}\)
\(1\dfrac{5}{7}\)de\(\dfrac{21}{20}\) es ¿qué número?
- Contestar
-
\(\dfrac{9}{5} = 1 \dfrac{4}{5}\)
Ejercicio\(\PageIndex{25}\)
¿Qué parte de\(\dfrac{9}{14}\) es\(\dfrac{6}{7}\)?
- Contestar
-
\(\dfrac{4}{3}\)o\(1 \dfrac{1}{3}\)