8.7: Examen de Aptitud
- Page ID
- 116460
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Examen de competencia
Para los problemas 1 - 16, estime cada valor. Después de haber hecho una estimación, encuentra el valor exacto. Los resultados pueden variar.
Ejercicio\(\PageIndex{1}\)
\(3,716 + 6,789\)
- Contestar
-
10,500 (10,505)
Ejercicio\(\PageIndex{2}\)
\(8,821 + 9,217\)
- Contestar
-
18,000 (18.038)
Ejercicio\(\PageIndex{3}\)
\(7,316 - 2,305\)
- Contestar
-
5,000 (5,011)
Ejercicio\(\PageIndex{4}\)
\(110,812 - 83,406\)
- Contestar
-
28,000 (27,406)
Ejercicio\(\PageIndex{5}\)
\(82 \cdot 38\)
- Contestar
-
3,200 (3,116)
Ejercicio\(\PageIndex{6}\)
\(51 \cdot 92\)
- Contestar
-
4,500 (4,692)
Ejercicio\(\PageIndex{7}\)
\(48 \cdot 6,012\)
- Contestar
-
300,000 (288,576)
Ejercicio\(\PageIndex{8}\)
\(238 \div 17\)
- Contestar
-
12 (14)
Ejercicio\(\PageIndex{9}\)
\(2,660 \div 28\)
- Contestar
-
90 (95)
Ejercicio\(\PageIndex{10}\)
\(43.06 + 37.94\)
- Contestar
-
81 (81.00)
Ejercicio\(\PageIndex{11}\)
\(307.006 + 198.0005\)
- Contestar
-
505 (505.0065)
Ejercicio\(\PageIndex{12}\)
\((47.2)(92.8)\)
- Contestar
-
4,371 (4,380,16)
Ejercicio\(\PageIndex{13}\)
\(58 + 91 + 61 + 88\)
- Contestar
-
\(2(60) + 2(90) = 300\)(298)
Ejercicio\(\PageIndex{14}\)
\(43 + 39 + 89 + 92\)
- Contestar
-
\(2(40) + 2(90) = 260\)(263)
Ejercicio\(\PageIndex{15}\)
\(81 + 78 + 27 + 79\)
- Contestar
-
\(30 + 3(80) = 270\)(265)
Ejercicio\(\PageIndex{16}\)
\(804 + 612 + 801 + 795 + 606\)
- Contestar
-
\(3(800) + 2(600) = 3,600\)(3,618)
Para problemas 17-21, utilice la propiedad distributiva para obtener el resultado exacto.
Ejercicio\(\PageIndex{17}\)
\(25 \cdot 14\)
- Responder
-
\(25 (10 + 4) = 250 + 100 = 350\)
Ejercicio\(\PageIndex{18}\)
\(15 \cdot 83\)
- Responder
-
\(15 (80 + 3) = 1,200 + 45 = 1,245\)
Ejercicio\(\PageIndex{19}\)
\(65 \cdot 98\)
- Responder
-
\(65 (100 - 2) = 6,500 - 130 = 6,370\)
Ejercicio\(\PageIndex{20}\)
\(80 \cdot 107\)
- Responder
-
\(80 (100 + 7) = 8,000 + 560 = 8,560\)
Ejercicio\(\PageIndex{21}\)
\(400 \cdot 215\)
- Responder
-
\(400 (200 + 15) = 80,000 + 6,000 = 86,000\)
Para problemas 22-25, estime cada valor. Después de haber hecho una estimación, encuentra el valor exacto. Los resultados pueden variar.
Ejercicio\(\PageIndex{22}\)
\(\dfrac{15}{16} + \dfrac{5}{8}\)
- Responder
-
\(1 + \dfrac{1}{2} = 1 \dfrac{1}{2}\)(\(1 \dfrac{9}{16}\))
Ejercicio\(\PageIndex{23}\)
\(\dfrac{1}{25} + \dfrac{11}{20} + \dfrac{17}{30}\)
- Responder
-
\(0 + \dfrac{1}{2} + \dfrac{1}{2} = 1\)(\(1 \dfrac{47}{300}\))
Ejercicio\(\PageIndex{24}\)
\(8 \dfrac{9}{16} + 14 \dfrac{1}{12}\)
- Responder
-
\(8 \dfrac{1}{2} + 14 = 22 \dfrac{1}{2}\)(\(22 \dfrac{31}{48}\))
Ejercicio\(\PageIndex{25}\)
\(5 \dfrac{4}{9} + 1 \dfrac{17}{36} + 6 \dfrac{5}{12}\)
- Responder
-
\(5 \dfrac{1}{2} + 1 \dfrac{1}{2} + 6 \dfrac{1}{2} = 13 \dfrac{1}{2}\)(\(13 \dfrac{1}{3}\))