Loading [MathJax]/extensions/mml2jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Buscar

  • Filtrar resultados
  • Ubicación
  • Clasificación
    • Tipo de artículo
    • Author
    • Show TOC
    • Cover Page
    • License
    • Transcluded
      • Autonumber Section Headings
      • License Version
    • Incluir datos adjuntos
    Buscando en
    Acerca de 4 resultados
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Prec%C3%A1lculo_(OpenStax)/03%3A_Funciones_polinomiales_y_racionales/3.06%3A_Ceros_de_funciones_polin%C3%B3micas
      En la última sección aprendimos a dividir polinomios. Ahora podemos usar la división polinómica para evaluar polinomios usando el Teorema del resto. Si el polinomio está dividido por\(x–k\), el resto ...En la última sección aprendimos a dividir polinomios. Ahora podemos usar la división polinómica para evaluar polinomios usando el Teorema del resto. Si el polinomio está dividido por\(x–k\), el resto se puede encontrar rápidamente evaluando la función polinómica en\(k\), es decir,\(f(k)\).
    • https://espanol.libretexts.org/Matematicas/Algebra/Mapa%3A_Algebra_Universitaria_(OpenStax)/05%3A_Funciones_polinomiales_y_racionales/506%3A_Ceros_de_Funciones_Polin%C3%B3micas
      En la última sección aprendimos a dividir polinomios. Ahora podemos usar la división polinómica para evaluar polinomios usando el Teorema del resto. Si el polinomio está dividido por\(x–k\), el resto ...En la última sección aprendimos a dividir polinomios. Ahora podemos usar la división polinómica para evaluar polinomios usando el Teorema del resto. Si el polinomio está dividido por\(x–k\), el resto se puede encontrar rápidamente evaluando la función polinómica en\(k\), es decir,\(f(k)\).
    • https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Libro%3A_Prec%C3%A1lculo_-_Una_investigaci%C3%B3n_de_funciones_(Lippman_y_Rasmussen)/03%3A_Funciones_polinomiales_y_racionales./304%3A_Teorema_de_Factores_y_Teorema_del_Resto
      En esta sección, veremos técnicas algebraicas para encontrar los ceros de polinomios.
    • https://espanol.libretexts.org/Matematicas/Algebra/Libro%3A_Algebra_y_Trigonometria_(OpenStax)/05%3A_Funciones_polinomiales_y_racionales/5.05%3A_Ceros_de_Funciones_Polin%C3%B3micas
      En la última sección aprendimos a dividir polinomios. Ahora podemos usar la división polinómica para evaluar polinomios usando el Teorema del resto. Si el polinomio está dividido por\(x–k\), el resto ...En la última sección aprendimos a dividir polinomios. Ahora podemos usar la división polinómica para evaluar polinomios usando el Teorema del resto. Si el polinomio está dividido por\(x–k\), el resto se puede encontrar rápidamente evaluando la función polinómica en\(k\), es decir,\(f(k)\).

    Support Center

    How can we help?