Saltar al contenido principal
LibreTexts Español

Términos Clave Capítulo 04: Sistemas de Ecuaciones Lineales

  • Page ID
    51770
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Ejemplo e indicaciones
    Palabras (o palabras que tienen la misma definición)La definición distingue entre mayúsculas y minúsculas(Opcional) Imagen a mostrar con la definición [No se muestra en Glosario, sólo en ventanas emergentes en las páginas](Opcional) Título para imagen(Opcional) Enlace externo o interno(Opcional) Fuente de definición
    (Ej. “Genética, Hereditaria, ADN...”)(Ej. “Relativo a genes o herencia”)La infame doble hélice https://bio.libretexts.org/CC-BY-SA; Delmar Larsen
    Entradas del glosario
    Palabra (s)DefiniciónImagenPie de fotoEnlaceFuente
    punto de equilibrioEl punto en el que los ingresos igualan a los costos es el punto de equilibrio; \(C(x)=R(x)\).    
    líneas coincidentesLas líneas coincidentes tienen la misma pendiente y la misma \(y\)-intercepción.    
    ángulos complementariosDos ángulos son complementarios si la suma de las medidas de sus ángulos es \(90\) grados.    
    sistemas consistentes e inconsistentesSistema consistente de ecuaciones es un sistema de ecuaciones con al menos una solución; sistema inconsistente de ecuaciones es un sistema de ecuaciones sin solución.    
    función de costoLa función de costo es el costo para fabricar cada unidad de tiempos \(x\), el número de unidades fabricadas, más los costos fijos; \(C(x) = (\text{cost per unit})x+ \text{fixed costs}\).    
    determinanteCada matriz cuadrada tiene un número real asociado a ella llamado su determinante.    
    matrizUna matriz es una matriz rectangular de números dispuestos en filas y columnas.    
    menor de una entrada en un \(3×3\) determinanteEl menor de una entrada en un \(3×3\) determinante es el \(2×2\) determinante que se encuentra al eliminar la fila y columna en el \(3×3\) determinante que contiene la entrada.    
    ingresosEl ingreso es el precio de venta de cada unidad de tiempos \(x\), el número de unidades vendidas; \(R(x) = (\text{selling price per unit})x\).    
    forma de escalón de filaUna matriz está en forma de escalón de filas cuando a la izquierda de la línea vertical, cada entrada en la diagonal es a \(1\) y todas las entradas por debajo de la diagonal son ceros.    
    soluciones de un sistema de ecuacionesLas soluciones de un sistema de ecuaciones son los valores de las variables que hacen verdaderas todas las ecuaciones; la solución está representada por un par ordenado \((x,y)\).    
    soluciones de un sistema de ecuaciones lineales con tres variablesLas soluciones de un sistema de ecuaciones son los valores de las variables que hacen verdaderas todas las ecuaciones; una solución está representada por un triple ordenado \((x,y,z)\).    
    matriz cuadradaUna matriz cuadrada es una matriz con el mismo número de filas y columnas.    
    ángulos suplementariosDos ángulos son complementarios si la suma de las medidas de sus ángulos es \(180\) grados.    
    sistema de ecuaciones linealesCuando se agrupan dos o más ecuaciones lineales, forman un sistema de ecuaciones lineales.    
    sistema de desigualdades linealesDos o más desigualdades lineales agrupadas forman un sistema de desigualdades lineales.    

    Términos Clave Capítulo 04: Sistemas de Ecuaciones Lineales is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.