Términos Clave Capítulo 05: Polinomios y Funciones Polinómicas
- Page ID
- 51787
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Palabras (o palabras que tienen la misma definición) | La definición distingue entre mayúsculas y minúsculas | (Opcional) Imagen a mostrar con la definición [No se muestra en Glosario, sólo en ventanas emergentes en las páginas] | (Opcional) Título para imagen | (Opcional) Enlace externo o interno | (Opcional) Fuente de definición |
---|---|---|---|---|---|
(Ej. “Genética, Hereditaria, ADN...”) | (Ej. “Relativo a genes o herencia”) | ![]() | La infame doble hélice | https://bio.libretexts.org/ | CC-BY-SA; Delmar Larsen |
Palabra (s) | Definición | Imagen | Pie de foto | Enlace | Fuente |
---|---|---|---|---|---|
binomial | Un binomio es un polinomio con exactamente dos términos. | ||||
par conjugado | Un par conjugado es dos binomios de la forma \((a−b), (a+b)\). El par de binomios cada uno tiene el mismo primer término y el mismo último término, pero un binomio es una suma y el otro es una diferencia. | ||||
grado de una constante | El grado de cualquier constante es \(0\). | ||||
grado de un polinomio | El grado de un polinomio es el grado más alto de todos sus términos. | ||||
grado de un término | El grado de un término es la suma de los exponentes de sus variables. | ||||
monomio | Un monomio es una expresión algebraica con un término. Un monomio en una variable es un término de la forma \(ax^m\), donde \(a\) es una constante y \(m\) es un número entero. | ||||
polinomio | Un monomio o dos o más monomios combinados por suma o resta es un polinomio. | ||||
función polinómica | Una función polinómica es una función cuyos valores de rango están definidos por un polinomio. | ||||
Propiedad de energía | De acuerdo con la Propiedad de Poder, \(a\) a la \(m\) a los \(n\) iguales \(a\) a los \(m\) tiempos \(n\). | ||||
Propiedad del producto | De acuerdo con la Propiedad del Producto, \(a\) a los \(m\) tiempos \(a\) a los \(n\) iguales \(a\) al \(m\) más \(n\). | ||||
Producto a una potencia | De acuerdo con el Producto a una Propiedad de Poder, \(a\) tiempos entre \(b\) paréntesis a los \(m\) iguales \(a\) a los \(m\) tiempos \(b\) a la \(m\). | ||||
Propiedades de los Exponentes Negativos | De acuerdo con las Propiedades de los Exponentes Negativos, \(a\) a lo negativo \(n\) es igual \(1\) dividido por \(a\) al \(n\) y \(1\) dividido por \(a\) al negativo \(n\) es igual \(a\) a la \(n\). | ||||
Propiedad de cociente | De acuerdo con la Propiedad Cociente, \(a\) a la \(m\) dividida por \(a\) a los \(n\) iguales \(a\) al \(m\) menos \(n\) siempre y cuando no \(a\) sea cero. | ||||
Cociente a un exponente negativo | Elevar un cociente a un exponente negativo ocurre cuando se \(a\) divide entre \(b\) paréntesis a la potencia de los \(n\) iguales negativos \(b\) dividido por entre \(a\) paréntesis al poder de \(n\). | ||||
Cociente a una propiedad de poder | De acuerdo con el Cociente a una Propiedad de Poder, \(a\) dividido por \(b\) entre paréntesis al poder de \(m\) es igual \(a\) a lo \(m\) dividido por \(b\) al \(m\) como siempre y cuando no \(b\) sea cero. | ||||
forma estándar de un polinomio | Un polinomio está en forma estándar cuando los términos de un polinomio se escriben en orden descendente de grados. | ||||
trinomio | Un trinomio es un polinomio con exactamente tres términos. | ||||
Propiedad Cero Exponente | De acuerdo con la Propiedad Cero Exponente, \(a\) al cero es \(1\) siempre y cuando no \(a\) es cero. |